Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Relational mechanics is a gauge theory of classical mechanics whose laws do not govern the motion of individual particles but the evolution of the distances between particles. Its formulation gives a satisfactory answer to Leibniz’s and Mach’s criticisms of Newton’s mechanics: relational mechanics does not rely on the idea of an absolute space. When describing the behavior of small subsystems with respect to the so called “fixed stars”, relational mechanics basically agrees with Newtonian mechanics. However, those subsystems having huge angular momentum will deviate from the Newtonian behavior if they are described in the frame of fixed stars. Such subsystems naturally belong to the field of astronomy; they can be used to test the relational theory. © 2016, Springer Science+Business Media New York.

Registro:

Documento: Artículo
Título:The Frame of Fixed Stars in Relational Mechanics
Autor:Ferraro, R.
Filiación:Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), Casilla de Correo 67, Sucursal 28, Buenos Aires, 1428, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, Buenos Aires, 1428, Argentina
Palabras clave:Classical mechanics; Mach’s principle; Relational mechanics
Año:2017
Volumen:47
Número:1
Página de inicio:71
Página de fin:88
DOI: http://dx.doi.org/10.1007/s10701-016-0042-7
Título revista:Foundations of Physics
Título revista abreviado:Found. Phys.
ISSN:00159018
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_00159018_v47_n1_p71_Ferraro

Referencias:

  • Mach, E., Die Mechanik in ihrer Entwicklung. Historisch-kritisch dargestellt (1983) The Science of Mechanics: A Critical and Historical Account of Its Development, , The Open Court Publishing Co., Chicago (1893))
  • Alexander, H.G., (1956) The Leibniz-Clarke Correspondence Together with Extracts from Newton’s Principia and Opticks, , Manchester University Press, Manchester
  • Ferraro, R., Relational mechanics as a gauge theory (2016) Gen. Relat. Gravit., 48, p. 23
  • Einstein, A., Gibt es eine Gravitationswirkung, die der elektrodynamischen Induktionswirkung analog ist? (1912) Vierteljahrsschrift für gerichtliche Medizin und öffentliches Sanitätswesen, 44, pp. 37-40
  • Einstein, A., Die formale Grundlage der allgemeinen Relativitätstheorie (1914) Sber. Preuss. Akad. Wiss. Berlin, pp. 1030-1085
  • Einstein, A., Die Grundlage der allgemeinen Relativitätstheorie (1916) Annalen der Physik, 354, pp. 769-822
  • Einstein, A., Prinzipielles zur allgemeinen Relativitätstheorie (1918) Annalen der Physik, 360, pp. 241-244
  • Hofmann, W.: Kritische Beleuchtung der beiden Grundbegriffe der Mechanik: Bewegung und Trägheit und daraus gezogene Folgerungen betreffs der Achsendrehung der Erde und des Foucault’schen Pendelversuchs. M. Kuppitsch Wwe., Wien (1904) (partial English translation in Ref. [12]); Reissner, H.: Über die Relativität der Beschleunigungen in der Mechanik, Physikalische Zeitschrift 15, 371–375 (1914) (English translation in Ref. [12]); Schrödinger, E.: Die Erfüllbarkeit der Relativitätsforderung in der klassischen Mechanik, Annalen der Physik 382, 325–336 (1925) (English translation in Ref. [12]); Barbour, J.B., Forceless machian dynamics (1975) Nuovo Cimento B, 26, pp. 16-22
  • Barbour, J.B., Pfister, H (1995) Einstein Studies, 6. , Mach’s Principle, From Newton’s Bucket to Quantum Gravity. Birkhäuser, Boston
  • Hughes, V.W., Robinson, H.G., Beltran-Lopez, V., Upper limit for the anisotropy of inertial mass from nuclear resonance experiments (1960) Phys. Rev. Lett., 4, pp. 342-344
  • Barbour, J.B., Bertotti, B., Gravity and Inertia in a Machian Framework (1977) Nuovo Cimento B, 38, pp. 1-27
  • Barbour, J.B., Bertotti, B., Mach’s principle and the structure of dynamical theories (1982) Proc. R. Soc. Lond. A, 382, pp. 295-306
  • Barbour, J., Scale-invariant gravity: particle dynamics (2003) Class. Quant. Grav., 20, pp. 1543-1570
  • Gryb, S., Implementing Mach’s principle using gauge theories (2009) Phys. Rev. D, 80, p. 024018
  • arXiv:1111.1472v3, Anderson, E.: The problem of time and quantum cosmology in the relational particle mechanics arena (2011); arXiv:1409.0105, Mercati, F.: A shape dynamics tutorial (2014); Lynden-Bell, D., Warner, B., The relativity of acceleration (1992) Variable Stars and Galaxies (in honour of M.W, p. 30. , Feast, ASP Conference Series
  • Lynden-Bell, D., Barbour, J.B., Pfister, H., A Relative Newtonian Mechanics (1995) Einstein Studies, vol, p. 6. , Mach’s Principle, From Newton’s Bucket to Quantum Gravity. Birkhäuser, Boston
  • Lynden-Bell, D., Katz, J., Classical mechanics without absolute space (1995) Phys. Rev. D, 52, pp. 7322-7324
  • Zwicky, F., Die Rotverschiebung von extragalaktischen Nebeln (1933) Helv. Phys. Acta, 6, pp. 110-127
  • Zwicky, F., On the masses of nebulae and of clusters of nebulae (1937) Astrophys. J., 86, pp. 217-246
  • Rubin, V.C., Ford, W.K., Thonnard, N., Rotational properties of 21 Sc galaxies with a large range of luminosities and radii, from NGC 4605 (R = 4 kpc) to UGC 2885 (R = 122 kpc) (1980) Astrophys. J., 238, pp. 471-487
  • Persic, M., Salucci, P., Stel, F., The universal rotation curve of spiral galaxies-I. The dark matter connection (1996) Mon. Not. R. Astron. Soc., 281, pp. 27-47

Citas:

---------- APA ----------
(2017) . The Frame of Fixed Stars in Relational Mechanics. Foundations of Physics, 47(1), 71-88.
http://dx.doi.org/10.1007/s10701-016-0042-7
---------- CHICAGO ----------
Ferraro, R. "The Frame of Fixed Stars in Relational Mechanics" . Foundations of Physics 47, no. 1 (2017) : 71-88.
http://dx.doi.org/10.1007/s10701-016-0042-7
---------- MLA ----------
Ferraro, R. "The Frame of Fixed Stars in Relational Mechanics" . Foundations of Physics, vol. 47, no. 1, 2017, pp. 71-88.
http://dx.doi.org/10.1007/s10701-016-0042-7
---------- VANCOUVER ----------
Ferraro, R. The Frame of Fixed Stars in Relational Mechanics. Found. Phys. 2017;47(1):71-88.
http://dx.doi.org/10.1007/s10701-016-0042-7