Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The hydrolytic and oxidative stability of l-(+)-ascorbic acid (AA) into plasticized pectin films were separately studied in view of preserving vitamin C activity and/or to achieve localized antioxidant activity at pharmaceutical and food interfaces. Films were made with each one of the enzymatically tailored pectins (50%, 70%, and 80% DM; Cameron et al. Carbohydr. Polym.2008, 71, 287-299) or commercial high methoxyl pectin (HMP; 72% DM). Since AA stability was dependent on water availability in the network, pectin nanostructure affected the AA kinetics. Higher AA retention and lower browning rates were achieved in HMP films, and calcium presence in them stabilized AA because of higher water immobilization. Air storage did not change AA decay and browning rates in HMP films, but they significantly increased in Ca-HMP films. It was concluded that the ability of the polymeric network to immobilize water seems to be the main factor to consider in order to succeed in retaining AA into film materials. © 2012 American Chemical Society.

Registro:

Documento: Artículo
Título:Hydrolytic and oxidative stability of l-(+)-ascorbic acid supported in pectin films: Influence of the macromolecular structure and calcium presence
Autor:Pérez, C.D.; Fissore, E.N.; Gerschenson, L.N.; Cameron, R.G.; Rojas, A.M.
Filiación:Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires (UBA), 1428 Buenos Aires, Argentina
Citrus and Subtropical Products Unit, U.S. Horticultural Laboratory, United States Department of Agriculture (USDA), 2001 Rock Road, Ft. Pierce, FL 34945, United States
Palabras clave:ascorbic acid; browning; edible film; hydrolysis; kinetics; oxidation; pectin nanostructure; water; Air storage; Antioxidant activities; Ascorbic acids; browning; Edible films; Film materials; Macromolecular structures; Oxidative stability; Polymeric networks; Vitamin C; Water availability; Calcium; Enzyme kinetics; Hydrolysis; Ketones; Nanostructures; Organic acids; Oxidation; Oxidation resistance; Water; Interfaces (materials); ascorbic acid; calcium; pectin; polymer; article; chemistry; hydrolysis; kinetics; oxidation reduction reaction; Ascorbic Acid; Calcium; Hydrolysis; Kinetics; Oxidation-Reduction; Pectins; Polymers
Año:2012
Volumen:60
Número:21
Página de inicio:5414
Página de fin:5422
DOI: http://dx.doi.org/10.1021/jf205132m
Título revista:Journal of Agricultural and Food Chemistry
Título revista abreviado:J. Agric. Food Chem.
ISSN:00218561
CODEN:JAFCA
CAS:ascorbic acid, 134-03-2, 15421-15-5, 50-81-7; calcium, 14092-94-5, 7440-70-2; pectin, 9000-69-5; Ascorbic Acid, 50-81-7; Calcium, 7440-70-2; Pectins; Polymers; pectin, 9000-69-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00218561_v60_n21_p5414_Perez

Referencias:

  • Cameron, R.G., Luzio, G.A., Goodner, K., Williams, M.A.K., Demethylation of a model homogalacturonan with a salt-independent pectin methylesterase from citrus: I. Effect of pH on demethylated block size, block number and enzyme mode of action (2008) Carbohydr. Polym., 71, pp. 287-299
  • Garcia-Martinez, M.C., Marquez-Ruiz, G., Lipid oxidation in functional dairy products (2009) Curr. Nutr. Food Sci., 5, pp. 209-216
  • De'Nobili, M.D., Perez, C.D., Navarro, D.A., Stortz, C.A., Rojas, A.M., Hydrolytic stability of l -(+)-ascorbic acid in low methoxyl pectin films with potential antioxidant activity at food interfaces (2011) Food Bioprocess Technol., , DOI 10.1007/s11947-011-0684-6
  • Miková, K., The regulation of antioxidants in food (2001) Antioxidants in Foods. Practical Applications, p. 282. , In; Pokorny, J. Yanishlieva, N. Gordon, M. CRC Press, Woodhead Publishing Limited: Cambridge, England, Chapter 11
  • Choi, M.H., Kim, G.H., Lee, H.S., Effects of ascorbic acid retention on juice color and pigment stability in blood orange (Citrus sinensis) juice during refrigerated storage (2002) Food Res. Int., 35, pp. 753-759
  • Damasceno, L.F., Fernandes, F.A.N., Magalhães, M.M.A., Brito, E.S., Evaluation and optimization of non enzymatic browning of "cajuina" during thermal treatment (2008) Braz. J. Chem. Eng., 25, pp. 313-320
  • Nielsen, S., Ismail, B., Sadler, G.D., Chemistry of aseptically processed foods (2010) Principles of Aseptic Processing and Packaging, , In, 3 rd ed. Nelson, P. E. The GMA Science and Education Foundation: USA; Chapter 5. ISBN 978-1-55753-496-5
  • Khan, M.M.T., Martell, A.E., Metal ion and metal chelate catalyzed oxidation of ascorbic acid by mo1ecuIa.r oxygen. 1. Cupric and ferric ion catalyzed oxidation (1967) J. Am. Chem. Soc., 89, pp. 4167-4179
  • León, P.G., Rojas, A.M., Gellan gum films as carriers of l -(+)-ascorbic acid (2007) Food Res. Int., 40, pp. 565-575
  • Vincken, J.P., Scholsm, H.A., Oomen, R.J.F.J., McCann, M.C., Ulvskov, P., Voragen, A.G.J., Visser, R.G.F., If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture (2003) Plant Physiol., 132, pp. 1781-1789
  • Guillotin, S.E., Bakx, E.J., Boulenguer, P., Mazoyer, J., Schols, H.A., Voragen, A.G.J., Populations having different GalA blocks characteristics are present in commercial pectins which are chemically similar but have different functionalities (2005) Carbohydr. Polym., 60, pp. 391-398
  • Willats, W.G.T., Knox, J.P., Mikkelsen, D., Pectin: New insights into an old polymer are starting to gel (2006) Trends Food Sci. Technol., 17, pp. 97-104
  • Luzio, G.A., Cameron, R.G., Demethylation of a model homogalacturonan with the salt-independent pectin methylesterase from citrus: Part II. Structure-function analysis (2008) Carbohydr. Polym., 71 (2), pp. 300-309
  • Cameron, R.G., Luzio, G.A., Vasu, P., Savary, B.J., Williams, M.A.K., Enzymatic modification of a model homogalacturonan with the thermally tolerant pectin methylesterase from citrus: 1. Nanostructural characterization, enzyme mode of action, and effect of pH (2011) J. Agric. Food Chem., 59, pp. 2717-2724
  • Pérez, C.D., Flores, S.K., Marangoni, A.G., Gerschenson, L.N., Rojas, A.M., Development of a high methoxyl-pectin edible film for retention of l -(+)-ascorbic acid (2009) J. Agric. Food Chem., 57, pp. 6844-6855
  • Yang, L., Paulson, A.T., Mechanical and water vapour barrier properties of edible gellan films (2000) Food Res. Int., 33, pp. 563-570
  • Greenspan, L., Humidity fixed points of binary saturated aqueous solutions (1977) J. Res. NBS-Sect. A, Phys. Chem., 81, pp. 89-96
  • Favetto, G., Resnik, S., Chirife, J., Ferro Fontán, C., Statistical evaluation of water activity measurements obtained with the Vaisala Humicap humidity meter (1983) J. Food Sci., 48, pp. 534-538
  • Rojas, A.M., Gerschenson, L.N., Determinación de vitamina C en productos frutihortícolas (1991) An. Asoc. Quim. Argent., 79, pp. 97-106
  • Joel, A., Indictor, N., Hanlan, J.F., Baer, N.S., The measurement and significance of pH in paper conservation (1972) Bull. Am. Group; Int. Inst. Conserv. Hist. Artistic Works, 12, pp. 119-125
  • Trezza, T.A., Krochta, J.M., Color stability of edible coatings during prolonged storage (2000) J. Food Sci., 65, pp. 1166-1169
  • Annual Book for ASTM Standards. Designation D1925, Standard Test Method for yellowness index of plastics (1995) Am. Soc. Test. Mater., , Philadelphia, PA
  • Miao, S., Roos, Y.H., Nonenzymatic browning kinetics of a carbohydrate-based low-moisture food system at temperatures applicable to spray drying (2004) J. Agric. Food Chem., 52, pp. 5250-5257
  • (1997) Mettler DSC User's Manual, pp. 42-45. , Mettler-Toledo GmbH: Schwerzenbach, Switzerland
  • Sokal, R.R., Rohlf, J.B., (2000) Biometry. The Principles and Practice of Statistics in Biological Research, pp. 253-380. , WH Freeman and Company: San Francisco
  • Oosterveld, A., Beldman, G., Schols, H.A., Voragen, A.G.J., Characterization of arabinose and ferulic acid rich pectic polysaccharides and hemicelluloses from sugar beet pulp (2000) Carbohydr. Res., 328, pp. 185-197
  • Tanhatan-Nasseri, A., Crépeau, M.J., Thibault, J.F., Ralet, M.C., Isolation and characterization of model homogalacturonans of tailored methylesterification patterns (2011) Carbohydr. Polym., 86, pp. 1236-1243
  • Voragen, A.G.J., Coenen, G.J., Verhoef, R.P., Schols, H.A., Pectin, a versatile polysaccharide present in plant cell walls (2009) Struct. Chem., 20, pp. 263-275
  • Zsivanovits, G., MacDougall, A.J., Smith, A.C., Ring, S.G., Material properties of concentrated pectin networks (2004) Carbohydr. Res., 339, pp. 1317-1322
  • Kurata, T., Sakurai, Y., Degradation of l -ascorbic acid and mechanism of non-enzymic browning reaction. Part II (1967) Agric. Biol. Chem., 31, pp. 170-176
  • Morrison, R.T., Boyd, R.N., (1990) Química Orgánica, p. 190. , Addison-Wesley Iberoamericana, S. A. Wilmington, DE, USA, pp, 211, 233
  • Kou, Y., Dickinson, L.C., Chinachoti, P., Mobility characterization of waxy corn starch using wide-line 1H nuclear magnetic resonance (2000) J. Agric. Food Chem., 48, pp. 5489-5495
  • Vittadini, E., Chinachoti, P., Effect of physico-chemical and molecular mobility parameters on Staphylococcus aureus growth (2003) Int. J. Food Sci. Technol., 38, pp. 841-847
  • Chen, P.L., Long, Z., Ruan, R., Labuza, T.P., Nuclear resonance studies of water mobility in bread during storage (1997) Lebensm.-Wiss. Technol., 30, pp. 178-183
  • Kerr, W.L., Wicker, L., NMR proton relaxation measurements of water associated with high methoxy and low methoxy pectins (2000) Carbohydr. Polym., 42, pp. 133-141
  • Oakenfull, D., Scott, A., Hydrophobic interaction in the gelation of high methoxyl pectins (1984) J. Food Sci., 49, pp. 1093-1098
  • Chandrasekaran, R., X-ray diffraction of food polysaccharides (1998) Adv. Food Nutr. Res., 42, pp. 131-210. , (131-137; 167-172; 185-191)
  • Ping, Z.H., Nguyen, Q.T., Chen, S.M., Zhou, J.Q., Ding, Y.D., States of water in different hydrophilic polymers-DSC and FTIR studies (2001) Polymer, 42, pp. 8461-8467
  • Braccini, I., Pérez, S., Molecular basis of Ca2+-induced gelation in alginates and pectins: The egg box model revisited (2001) Biomacromolecules, 2, pp. 1089-1096
  • Willats, W.G., Orfila, C., Limberg, G., Buchholt, H.C., Van Alebeek, G.J., Voragen, A.G., Marcus, S.E., Knox, J.P., Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion (2001) J. Biol. Chem., 276, pp. 19404-19413
  • Hotchkiss Jr., A.T., Savary, B.J., Cameron, R.G., Chau, H.K., Brouillette, J., Luzio, G.A., Fishman, M.L., Enzymatic modification of pectin to increase its calcium sensitivity while preserving its molecular weight (2002) J. Agric. Food Chem., 50, pp. 2931-2937
  • McHugh, T.H., Huxsoll, C.C., Krochta, J.M., Permeability properties of fruit puree edible films (1996) J. Food Sci., 61, pp. 88-91
  • Morris, G.A., Ralet, M.C., Bonnin, E., Thibault, J.F., Harding, S.E., Physical characterisation of the rhamnogalacturonan and homogalacturonan fractions of sugar beet (Beta vulgaris) pectin (2010) Carbohydr. Polym., 82, pp. 1161-1167

Citas:

---------- APA ----------
Pérez, C.D., Fissore, E.N., Gerschenson, L.N., Cameron, R.G. & Rojas, A.M. (2012) . Hydrolytic and oxidative stability of l-(+)-ascorbic acid supported in pectin films: Influence of the macromolecular structure and calcium presence. Journal of Agricultural and Food Chemistry, 60(21), 5414-5422.
http://dx.doi.org/10.1021/jf205132m
---------- CHICAGO ----------
Pérez, C.D., Fissore, E.N., Gerschenson, L.N., Cameron, R.G., Rojas, A.M. "Hydrolytic and oxidative stability of l-(+)-ascorbic acid supported in pectin films: Influence of the macromolecular structure and calcium presence" . Journal of Agricultural and Food Chemistry 60, no. 21 (2012) : 5414-5422.
http://dx.doi.org/10.1021/jf205132m
---------- MLA ----------
Pérez, C.D., Fissore, E.N., Gerschenson, L.N., Cameron, R.G., Rojas, A.M. "Hydrolytic and oxidative stability of l-(+)-ascorbic acid supported in pectin films: Influence of the macromolecular structure and calcium presence" . Journal of Agricultural and Food Chemistry, vol. 60, no. 21, 2012, pp. 5414-5422.
http://dx.doi.org/10.1021/jf205132m
---------- VANCOUVER ----------
Pérez, C.D., Fissore, E.N., Gerschenson, L.N., Cameron, R.G., Rojas, A.M. Hydrolytic and oxidative stability of l-(+)-ascorbic acid supported in pectin films: Influence of the macromolecular structure and calcium presence. J. Agric. Food Chem. 2012;60(21):5414-5422.
http://dx.doi.org/10.1021/jf205132m