Artículo

Quinteros, J.; Jacovkis, P.M.; Ramos, V.A. "Evolution of the upper crustal deformation in subduction zones" (2006) Journal of Applied Mechanics, Transactions ASME. 73(6):984-994
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The uplift and evolution of a noncollisional orogen developed along a subduction zone, such as the Andean system, is a direct consequence of the interrelation between plate tectonic stresses and erosion. Tectonic stresses are related to the convergence velocity and thermal state, among other causes. In this paper, a new model designed to investigate the evolution of the topography and the upper crustal deformation of noncollisional orogens in a subduction zone produced by the oceanic crust being subducted is presented. The mechanical behavior of the crust was modeled by means of finite elements methods to solve Stokes equations for a strain-rate-dependent viscoplastic rheology. The model takes into account erosion effects using interface-tracking methods to assisn fictitious properties to nonmaterial elements. Copyright © 2006 by ASME.

Registro:

Documento: Artículo
Título:Evolution of the upper crustal deformation in subduction zones
Autor:Quinteros, J.; Jacovkis, P.M.; Ramos, V.A.
Filiación:Laboratorio de Tectónica Andina, Departamento de Geología, Facultad de Cs. Exactas y Naturales, Buenos Aires, Argentina
Departamento de Computación, Instituto de Cálculo, Facultad de Cs. Exactas y Naturales, Buenos Aires, Argentina
Palabras clave:Erosion; Finite element method; Mathematical models; Plates (structural components); Stress analysis; Tectonics; Velocity; Andean system; Crustal deformation; Mechanical behavior; Tectonic stresses; Shear deformation
Año:2006
Volumen:73
Número:6
Página de inicio:984
Página de fin:994
DOI: http://dx.doi.org/10.1115/1.2204962
Título revista:Journal of Applied Mechanics, Transactions ASME
Título revista abreviado:J Appl Mech Trans ASME
ISSN:00218936
CODEN:JAMCA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00218936_v73_n6_p984_Quinteros

Referencias:

  • Cristallini, E.O., Allmendinger, R.W., Pseudo 3-D modeling of trishear fault-propagation folding (2001) J. Struct. Geol., 23, pp. 1883-1899
  • Hindle, D., Besson, O., Burkhard, M., A model of displacement and strain for arc-shaped mountain belts applied to the jura arc (2000) J. Struct. Geol., 22, pp. 1285-1296
  • Pysklywec, R.N., Beaumont, C., Intraplate tectonics: Feedback between radioactive thermal weakening and crustal deformation driven by mantle lithosphere instabilities (2004) Earth Planet. Sci. Lett., 221, pp. 275-292
  • Babeyko, A.Y., Sobolev, S.V., Trumbull, R.B., Oncken, O., Lavier, L.L., Numerical models of crustal scale convection and partial melting beneath the altiplano-puna plateau (2002) Earth Planet. Sci. Lett., 199, pp. 373-388
  • Gemmer, L., Nielsen, S.B., Bayer, U., Late cretaceous-cenozoic evolution'of the north german basin: Results from 3D geodynamic modelling (2003) Tectonophysics, 373, pp. 39-54
  • Willett, S.D., Rheological dependence of extension in wedge models of convergent orogens (1999) Tectonophysics, 305, pp. 419-435
  • Pysklywec, R.N., Shahnas, M.H., Time-dependent surface topography in a coupled crust-mantle convection model (2003) Geophys. I. Int., 154, pp. 268-278
  • Behn, M.D., Lin, J., Zuber, M.T., A continuum mechanics model for normal faulting using a strain-rate softening rheology: Implications for thermal and rheological controls on continental and oceanic rifting (2002) Earth Planet. Sci. Lett., 202, pp. 725-740
  • Fullsack, P., An arbitrary lagrangian-eulerian formulation for creeping flows and its application in tectonic models (1995) Geophys. J. Int., 120, pp. 1-23
  • Pardo-Casas, F., Molnar, P., Relative motion of the nazca (faral-ion) and south american plates since late cretaceous time (1987) Tectonics, 6, pp. 233-248
  • Lamb, S., Davis, P., Cenozoic climate change as a possible cause for the rise of the andes (2003) Nature (London), 425, pp. 792-797
  • Silver, P.G., Russo, R.M., Lithgow-Bertelloni, C., Coupling of South American and african plate motion and plate deformation (1998) Science, 279, pp. 60-63
  • Sobolev, S.V., Babeyko, A.Y., What drives orogeny in the andes? (2005) Geology, 33, pp. 617-620
  • Kay, S.M., Godoy, E., Kurtz, A., Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central andes (2005) Bull. Geol. Soc. Am., 117, pp. 67-88
  • Ruddiman, W.F., Raymo, M.E., Prell, W.L., Kutzbach, J.E., The uplift-climate connection: A synthesis (1997) Tectonic Uplift and Climate Change, pp. 471-515. , W. F. Ruddiman, ed., Plenum Press, New York
  • Beaumont, C., Fullsack, P., Hamilton, J., (1992) Erosional Control of Active Compressional Orogens, pp. 19-31. , Thrust tectonics, K. R. McClay, ed., Chapman and Hall, New York
  • Girault, V., Raviart, P.-A., (1986) Finite Element Methods for Navier-Stokes Equations, , Springer-Verlag, Berlin
  • Brezzi, F., Fortin, M., (1991) Mixed and Hybrid Finite Elements Methods, , Springer-Verlag, Berlin
  • Bathe, K.-J., (1996) Finite Element Procedures, , Prentice-Hall, Englewood Cliffs, NJ
  • Ernst, W.G., Systematics of large-scale tectonics and age progressions in alpine and circum-pacific blueschist belts (1975) Tectonophysics, 26, pp. 229-246
  • Kohlstedt, D.L., Evans, B., Mackwell, S.J., Strength of the lithosphere: Constraints imposed by laboratory experiments (1995) J. Geophys. Res., 100, pp. 17587-17602
  • Jaoul, O., Tullis, J., Kronenberg, A., The effect of varying water contents on the creep behavior of heavytree quartzite (1984) J. Geophys. Res., 89, pp. 4298-4312
  • Mackwell, S.I., Zimmerman, M.E., Kohlstedt, D.L., High temperature deformation of dry diabase with application to tectonics on venus (1998) J. Geophys. Res., 103, pp. 975-984
  • Tsenn, M.C., Carter, N.L., Upper limits of power law creep of rocks (1987) Tectonophysics, 136, pp. 1-26
  • Byerlee, J., Friction of rocks (1978) Pure Appl. Geophys., 116, pp. 615-626
  • Flemings, P., Jordan, T.E., A synthetic stratigraphic model of foreland basin development (1989) J. Geophys. Res., 94, pp. 3851-3866
  • Howard, A.D., Kerby, D., Channel changes in badlands (1983) Bull. Geol. Soc. Am., 94, pp. 739-752
  • Willett, S.D., Orogeny and orography: The effects of erosion on the structure of mountain belts (1999) J. Geophys. Res., 104, pp. 28957-28981
  • Turcotte, D.L., Schubert, G., (1982) Geodynamics: Applications of Continuum Mechanics to Geological Problems, , Wiley, New York
  • Allen, P.A., Allen, J.R., (1990) Basin Analysis, Principles & Applications, , Blackwell Scientific Publications, Oxford
  • Crandall, S.H., Dahl, N.C., Lardner, T.J., (1978) An Introduction to the Mechanics of Solids, 2nd Ed., , McGraw-Hill, New York
  • Burov, E.B., Diament, M., The effective elastic thickness (Te) of continental lithosphere: What does it really mean? (1995) J. Geophys. Res., 100, pp. 3905-3927
  • Karner, G.D., Steckler, M.S., Thorne, J.A., Long-term thermo-mechanical properties of the lithosphere (1983) Nature (London), 304, pp. 250-252
  • Gansser, A., Facts and theories of the andes (1973) J. Geol. Soc. (London), 129, pp. 93-131
  • Pankhurst, R.J., Weaver, S.D., Hervé, F., Larrondo, P., Mesozoic-cenozoic evolution of the North Patagonian Batholith in Aysén, Southern Chile (1999) J. Geol. Soc. (London), 156, pp. 673-694
  • Somoza, R., Updated Nazca (Farallon) - South America relative motions during the last 40 my: Implications for mountain building in the central andean region (1998) J. S. A. Earth Sci., 11, pp. 211-215
  • Ramos, V.A., Andean foothills structures in Northern Magallanes Basin, Argentina (1989) Am. Assoc. Pet. Geol. Bull., 73, pp. 887-903
  • Cande, S.C., Leslie, R.B., Late cenozoic tectonics of the Southern Chile trench (1986) J. Geophys. Res., 91, pp. 471-496
  • Ramos, V.A., Seismic ridge subduction and topography: Foreland deformation in the patagonian andes (2005) Tectonophysics, 399, pp. 73-86
  • Hervé, F., Demant, A., Ramos, V.A., Pankhurst, R.I., Suárez, M., The southern andes (2000) Tectonic Evolution of South America, pp. 605-634. , U. G. Cordani, E. J. Milani, A. T. Filho, and D. A. Campos, eds., International Geological Congress, Rio de Janeiro
  • Blisniuk, P.M., Stern, L.A., Chamberlain, C.P., Idleman, B., Zeitler, P.K., Climatic and ecologic changes during miocene surface uplift in the southern patagonian andes (2005) Earth Planet. Sci. Lett., 230, pp. 125-142
  • Thomson, S.N., Hervé, F., Stöckhert, B., Mesozoic-cenozoic denudation history of the patagonian andes (Southern Chile) and its correlation to different subduction processes (2001) Tectonics, 20, pp. 693-711
  • Bourgois, J., Martin, H., Moigne, J.L., Frutos, I., Subduction erosion related to spreading-ridge subduction: Taitao peninsula (chile margin triple junction area) (1996) Geology, 24, pp. 723-726
  • Nullo, F.E., Combina, A.M., Sedimentitas terciarias continentales (2002) Geología y Recursos Naturales de Santa Cruz. Relatorio del XV Congreso Geológico Argentino. El Calafate, 1 (16), pp. 245-258. , M. J. Haller, ed., Asociación Geológica Argentina, Buenos Aires

Citas:

---------- APA ----------
Quinteros, J., Jacovkis, P.M. & Ramos, V.A. (2006) . Evolution of the upper crustal deformation in subduction zones. Journal of Applied Mechanics, Transactions ASME, 73(6), 984-994.
http://dx.doi.org/10.1115/1.2204962
---------- CHICAGO ----------
Quinteros, J., Jacovkis, P.M., Ramos, V.A. "Evolution of the upper crustal deformation in subduction zones" . Journal of Applied Mechanics, Transactions ASME 73, no. 6 (2006) : 984-994.
http://dx.doi.org/10.1115/1.2204962
---------- MLA ----------
Quinteros, J., Jacovkis, P.M., Ramos, V.A. "Evolution of the upper crustal deformation in subduction zones" . Journal of Applied Mechanics, Transactions ASME, vol. 73, no. 6, 2006, pp. 984-994.
http://dx.doi.org/10.1115/1.2204962
---------- VANCOUVER ----------
Quinteros, J., Jacovkis, P.M., Ramos, V.A. Evolution of the upper crustal deformation in subduction zones. J Appl Mech Trans ASME. 2006;73(6):984-994.
http://dx.doi.org/10.1115/1.2204962