Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The retinoblastoma tumor suppressor (Rb) controls the proliferation, differentiation, and survival of cells in most eukaryotes with a role in the fate of stem cells. Its inactivation by mutation or oncogenic viruses is required for cellular transformation and eventually carcinogenesis. The high conservation of the Rb cyclin fold prompted us to investigate the link between conformational stability and ligand binding properties of the RbAB pocket domain. RbAB unfolding presents a three-state transition involving cooperative secondary and tertiary structure changes and a partially folded intermediate that can oligomerize. The first transition corresponds to unfolding of the metastable B subdomain containing the binding site for the LXCXE motif present in cellular and viral targets, and the second transition corresponds to the stable A subdomain. The low thermodynamic stability of RbAB translates into a propensity to rapidly oligomerize and aggregate at 37°C (T50 = 28 min) that is suppressed by human papillomavirus E7 and E2F peptide ligands, suggesting that Rb is likely stabilized in vivo through binding to target proteins. We propose that marginal stability and associated oligomerization may be conserved for function as a "hub" protein, allowing the formation of multiprotein complexes, which could constitute a robust mechanism to retain its cell cycle regulatory role throughout evolution. Decreased stability and oligomerization are shared with the p53 tumor suppressor, suggesting a link between folding and function in these two essential cell regulators that are inactivated in most cancers and operate within multitarget signaling pathways. © 2013 by The American Society for Biochemistry and Molecular Biology, Inc.

Registro:

Documento: Artículo
Título:Folding of a cyclin box: Linking multitarget binding to marginal stability, oligomerization, and aggregation of the retinoblastoma tumor suppressor ab pocket domain
Autor:Chemes, L.B.; Noval, M.G.; Sánchez, I.E.; De Prat-Gay, G.
Filiación:Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir, Inst. de Invest. Bioquimicas de Buenos Aires-Consejo Nac. de Invest. Cientificas Y Tec. (CONICET), Avenida Patricias Argentinas 435, 1405 Buenos Aires, Argentina
Protein Physiology Laboratory, Departamento de Quimica Biologica, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
Palabras clave:Cellular transformation; Conformational stabilities; Human papillomavirus; Ligand binding properties; Multi-protein complex; Retinoblastoma tumors; Secondary and tertiary structures; Signaling pathways; Binding energy; Ligands; Oligomerization; Oncogenic viruses; Proteins; Rubidium; Stability; Stem cells; Tumors; Oligomers; cycline; protein E7; protein p53; retinoblastoma protein; transcription factor E2F; article; binding site; carcinogenesis; cell cycle regulation; cell differentiation; cell fate; cell proliferation; cell survival; cell transformation; circular dichroism; eukaryote; fluorescence spectroscopy; gene mutation; human; in vivo study; ligand binding; mathematical analysis; oligomerization; peptide synthesis; priority journal; protein aggregation; protein binding; protein conformation; protein domain; protein expression; protein folding; protein function; protein motif; protein purification; protein stability; protein targeting; protein unfolding; signal transduction; stem cell; temperature; thermodynamics; tumor virus; Wart virus; Cyclin Fold; Marginal Stability; Oligomerization; Protein Aggregation; Protein Folding; Protein Misfolding; Protein Stability; Retinoblastoma (Rb); Scaffold Proteins; Tumor Suppressor; Binding Sites; Cell Differentiation; Circular Dichroism; Cyclins; DNA-Binding Proteins; E2F Transcription Factors; Humans; Ligands; Models, Molecular; Oncogene Proteins, Viral; Papillomavirus E7 Proteins; Protein Binding; Protein Folding; Protein Structure, Tertiary; Retinoblastoma Protein; Signal Transduction; Temperature; Tumor Suppressor Protein p53; Eukaryota; Human papillomavirus
Año:2013
Volumen:288
Número:26
Página de inicio:18923
Página de fin:18938
DOI: http://dx.doi.org/10.1074/jbc.M113.467316
Título revista:Journal of Biological Chemistry
Título revista abreviado:J. Biol. Chem.
ISSN:00219258
CODEN:JBCHA
CAS:Cyclins; DNA-Binding Proteins; E2F Transcription Factors; E7 protein, Human papillomavirus type 18; Ligands; Oncogene Proteins, Viral; Papillomavirus E7 Proteins; Retinoblastoma Protein; TP53 protein, human; Tumor Suppressor Protein p53; oncogene protein E7, Human papillomavirus type 16
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219258_v288_n26_p18923_Chemes

Referencias:

  • Van Den Heuvel, S., Dyson, N.J., Conserved functions of the pRB and E2F families (2008) Nat. Rev. Mol. Cell Biol., 9, pp. 713-724
  • Khidr, L., Chen, P.-L., RB, the conductor that orchestrates life, death and differentiation (2006) Oncogene, 25 (38), pp. 5210-5219. , DOI 10.1038/sj.onc.1209612, PII 1209612
  • Macaluso, M., Montanari, M., Giordano, A., Rb family proteins as modulators of gene expression and new aspects regarding the interaction with chromatin remodeling enzymes (2006) Oncogene, 25 (38), pp. 5263-5267. , DOI 10.1038/sj.onc.1209680, PII 1209680
  • Sage, J., The retinoblastoma tumor suppressor and stem cell biology (2012) Genes Dev., 26, pp. 1409-1420
  • Cross, F.R., Buchler, N.E., Skotheim, J.M., Evolution of networks and sequences in eukaryotic cell cycle control (2011) Philos. Trans. R. Soc. Lond. B Biol. Sci., 366, pp. 3532-3544
  • Gutzat, R., Borghi, L., Gruissem, W., Emerging roles of RETI-NOBLASTOMA-RELATED proteins in evolution and plant development (2012) Trends Plant Sci., 17, pp. 139-148
  • Cao, L., Peng, B., Yao, L., Zhang, X., Sun, K., Yang, X., Yu, L., The ancient function of RB-E2F pathway: Insights from its evolutionary history (2010) Biol. Direct, 5, p. 55
  • DeGregori, J., The Rb network (2004) J. Cell Sci., 117, pp. 3411-3413
  • Burkhart, D.L., Sage, J., Cellular mechanisms of tumour suppression by the retinoblastoma gene (2008) Nat. Rev. Cancer, 8, pp. 671-682
  • Zur Hausen, H., Papillomaviruses in the causation of human cancers - A brief historical account (2009) Virology, 384, pp. 260-265
  • McGivern, D.R., Lemon, S.M., Virus-specific mechanisms of carcinogenesis in hepatitis C virus associated liver cancer (2011) Oncogene, 30, pp. 1969-1983
  • Sastre-Garau, X., Merkel cell carcinoma revisited: A new example of viro-induced human tumour (2011) Pathol. Biol., 59, pp. 127-130
  • Lohmann, D.R., RB1 gene mutations in retinoblastoma (1999) Hum. Mutat., 14, pp. 283-288
  • Valverde, J.R., Alonso, J., Palacios, I., Pestaña, A., RB1 gene mutation up-date, a meta-analysis based on 932 reported mutations available in a searchable database (2005) BMC Genet., 6, p. 53
  • Sherr, C.J., McCormick, F., The RB and p53 pathways in cancer (2002) Cancer Cell, 2 (2), pp. 103-112. , DOI 10.1016/S1535-6108(02)00102-2
  • Knudsen, E.S., Knudsen, K.E., Tailoring to RB: Tumour suppressor status and therapeutic response (2008) Nat. Rev. Cancer, 8, pp. 714-724
  • Hassler, M., Singh, S., Yue, W.W., Luczynski, M., Lakbir, R., Sanchez-Sanchez, F., Bader, T., Mittnacht, S., Crystal Structure of the Retinoblastoma Protein N Domain Provides Insight into Tumor Suppression, Ligand Interaction, and Holoprotein Architecture (2007) Molecular Cell, 28 (3), pp. 371-385. , DOI 10.1016/j.molcel.2007.08.023, PII S109727650700593X
  • Lee, J.-O., Russo, A.A., Pavletich, N.P., Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7 (1998) Nature, 391 (6670), pp. 859-865. , DOI 10.1038/36038
  • Rubin, S.M., Gall, A.L., Zheng, N., Pavletich, N.P., Structure of the Rb C-terminal domain bound to E2F1-DP1: A mechanism for phosphorylation-induced E2F release (2005) Cell, 123, pp. 1351-1363
  • Burke, J.R., Hura, G.L., Rubin, S.M., Structures of inactive retinoblastoma protein reveal multiple mechanisms for cell cycle control (2012) Genes Dev., 26, pp. 1156-1166
  • Dick, F.A., Structure-function analysis of the retinoblastoma tumor suppressor protein-is the whole a sum of its parts? (2007) Cell Div., 2, p. 26
  • Noble, M.E.M., Endicott, J.A., Brown, N.R., Johnson, L.N., The cyclin box fold: Protein recognition in cell-cycle and transcription control (1997) Trends in Biochemical Sciences, 22 (12), pp. 482-487. , DOI 10.1016/S0968-0004(97)01144-4, PII S0968000497011444
  • Gibson, T.J., Thompson, J.D., Blocker, A., Kouzarides, T., Evidence for a protein domain superfamily shared by the cyclins, TFIIB and RB/p107 (1994) Nucleic Acids Research, 22 (6), pp. 946-952
  • Isaac, C.E., Francis, S.M., Martens, A.L., Julian, L.M., Seifried, L.A., Erdmann, N., Binné, U.K., Dick, F.A., The retinoblastoma protein regulates pericentric heterochromatin (2006) Mol. Cell. Biol., 26, pp. 3659-3671
  • Coschi, C.H., Martens, A.L., Ritchie, K., Francis, S.M., Chakrabarti, S., Berube, N.G., Dick, F.A., Mitotic chromosome condensation mediated by the retinoblastoma protein is tumor-suppressive (2010) Genes Dev., 24, pp. 1351-1363
  • Lee, C., Chang, J.H., Lee, H.S., Cho, Y., Structural basis for the recognition of the E2F transactivation domain by the retinoblastoma tumor suppressor (2002) Genes and Development, 16 (24), pp. 3199-3212. , DOI 10.1101/gad.1046102
  • De Souza, R.F., Iyer, L.M., Aravind, L., Diversity and evolution of chromatin proteins encoded by DNA viruses (2010) Biochim. Biophys. Acta, 1799, pp. 302-318
  • Cremades, N., Sancho, J., Freire, E., The native-state ensemble of proteins provides clues for folding, misfolding and function (2006) Trends in Biochemical Sciences, 31 (9), pp. 494-496. , DOI 10.1016/j.tibs.2006.07.001, PII S0968000406001733
  • Gidalevitz, T., Kikis, E.A., Morimoto, R.I., A cellular perspective on conformational disease: The role of genetic background and proteostasis networks (2010) Curr. Opin. Struct. Biol., 20, pp. 23-32
  • Dobson, C.M., Protein folding and misfolding (2003) Nature, 426, pp. 884-890
  • Khoo, K.H., Mayer, S., Fersht, A.R., Effects of stability on the biological function of p53 (2009) J. Biol. Chem., 284, pp. 30974-30980
  • Tang, K.S., Guralnick, B.J., Wang, W.K., Fersht, A.R., Itzhaki, L.S., Stability and folding of the tumour suppressor protein p16 (1999) Journal of Molecular Biology, 285 (4), pp. 1869-1886. , DOI 10.1006/jmbi.1998.2420
  • Joerger, A.C., Fersht, A.R., Structural biology of the tumor suppressor p53 (2008) Annu. Rev. Biochem., 77, pp. 557-582
  • Freed-Pastor, W.A., Prives, C., Mutant p53: One name, many proteins (2012) Genes Dev., 26, pp. 1268-1286
  • Witkiewicz, A.K., Knudsen, K.E., Dicker, A.P., Knudsen, E.S., The meaning of p16(ink4a) expression in tumors: Functional significance, clinical associations and future developments (2011) Cell Cycle, 10, pp. 2497-2503
  • Friedler, A., Veprintsev, D.B., Hansson, L.O., Fersht, A.R., Kinetic instability of p53 core domain mutants. Implications for rescue by small molecules (2003) Journal of Biological Chemistry, 278 (26), pp. 24108-24112. , DOI 10.1074/jbc.M302458200
  • Bullock, A.N., Henckel, J., Fersht, A.R., Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: Definition of mutant states for rescue in cancer therapy (2000) Oncogene, 19 (10), pp. 1245-1256
  • Wang, X., Ren, J., Qu, X., Biophysical studies on the full-length human cyclin A2: Protein stability and folding/unfolding thermodynamics (2008) J. Phys. Chem. B, 112, pp. 8346-8353
  • Grossmann, J.G., Sharff, A.J., O'Hare, P., Luisi, B., Molecular shapes of transcription factors TFIIB and VP16 in solution: Implications for recognition (2001) Biochemistry, 40 (21), pp. 6267-6274. , DOI 10.1021/bi0028946
  • Hayashi, F., Ishima, R., Liu, D., Tong, K.I., Kim, S., Reinberg, D., Bagby, S., Ikura, M., Human general transcription factor TFIIB: Conformational variability and interaction with VP16 activation domain (1998) Biochemistry, 37 (22), pp. 7941-7951. , DOI 10.1021/bi9801098
  • Harbour, J.W., Luo, R.X., Dei, S.A., Postigo, A.A., Dean, D.C., Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1 (1999) Cell, 98 (6), pp. 859-869. , DOI 10.1016/S0092-8674(00)81519-6
  • Lamber, E.P., Beuron, F., Morris, E.P., Svergun, D.I., Mittnacht, S., Structural insights into the mechanism of phosphoregulation of the retinoblastoma protein (2013) PLoS One, 8, pp. e58463
  • Ang, H.C., Joerger, A.C., Mayer, S., Fersht, A.R., Effects of common cancer mutations on stability and DNA binding of full-length p53 compared with isolated core domains (2006) Journal of Biological Chemistry, 281 (31), pp. 21934-21941. , http://www.jbc.org/cgi/reprint/281/31/21934, DOI 10.1074/jbc.M604209200
  • Mayer, S., Rüdiger, S., Ang, H.C., Joerger, A.C., Fersht, A.R., Correlation of levels of folded recombinant p53 in Escherichia coli with thermodynamic stability in vitro (2007) J. Mol. Biol., 372, pp. 268-276
  • Nichols, N.M., Matthews, K.S., Human p53 phosphorylation mimic, S392E, increases nonspecific DNA affinity and thermal stability (2002) Biochemistry, 41 (1), pp. 170-178. , DOI 10.1021/bi011736r
  • Natan, E., Baloglu, C., Pagel, K., Freund, S.M., Morgner, N., Robinson, C.V., Fersht, A.R., Joerger, A.C., Interaction of the p53 DNA-binding domain with its N-terminal extension modulates the stability of the p53 tetramer (2011) J. Mol. Biol., 409, pp. 358-368
  • Chemes, L.B., Sánchez, I.E., Smal, C., De Prat-Gay, G., Targeting mechanism of the retinoblastoma tumor suppressor by a prototypical viral oncoprotein. Structural modularity, intrinsic disorder and phosphorylation of human papillomavirus E7 (2010) FEBS J., 277, pp. 973-988
  • Pace, C.N., Vajdos, F., Fee, L., Grimsley, G., Gray, T., How to measure and predict the molar absorption coefficient of a protein (1995) Protein Sci., 4, pp. 2411-2423
  • Uversky, V.N., Use of fast protein size-exclusion liquid chromatography to study the unfolding of proteins which denature through the molten globule (1993) Biochemistry, 32, pp. 13288-13298
  • Baker, B.M., Murphy, K.P., Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry (1996) Biophysical Journal, 71 (4), pp. 2049-2055
  • Rodriguez-Larrea, D., Minning, S., Borchert, T.V., Sanchez-Ruiz, J.M., Role of Solvation Barriers in Protein Kinetic Stability (2006) Journal of Molecular Biology, 360 (3), pp. 715-724. , DOI 10.1016/j.jmb.2006.05.009, PII S0022283606005754
  • Sanchez-Ruiz, J.M., Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry (1992) Biophys. J., 61, pp. 921-935
  • Zlotnick, A., Johnson, J.M., Wingfield, P.W., Stahl, S.J., Endres, D., A theoretical model successfully identifies features of hepatitis B virus capsid assembly (1999) Biochemistry, 38, pp. 14644-14652
  • Gast, K., Modler, A.J., (2005) Protein Folding Handbook, pp. 673-704. , (Buchner, J., and Kiefhaber, T., eds) Wiley-VCH, Weinheim, Germany
  • Myers, J.K., Pace, C.N., Scholtz, J.M., Denaturant m values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding (1995) Protein Sci., 4, pp. 2138-2148
  • Chemes, L.B., Sánchez, I.E., De Prat-Gay, G., Kinetic recognition of the retinoblastoma tumor suppressor by a specific protein target (2011) J. Mol. Biol., 412, pp. 267-284
  • Lepock, J.R., Ritchie, K.P., Kolios, M.C., Rodahl, A.M., Heinz, K.A., Kruuv, J., Influence of transition rates and scan rate on kinetic simulations of differential scanning calorimetry profiles of reversible and irreversible protein denaturation (1992) Biochemistry, 31 (50), pp. 12706-12712. , DOI 10.1021/bi00165a023
  • Smal, C., Alonso, L.G., Wetzler, D.E., Heer, A., De Prat Gay, G., Ordered self-assembly mechanism of a spherical oncoprotein oligomer triggered by zinc removal and stabilized by an intrinsically disordered domain (2012) PLoS One, 7, pp. e36457
  • Ishimaru, D., Maia, L.F., Maiolino, L.M., Quesado, P.A., Lopez, P.C.M., Almeida, F.C.L., Valente, A.P., Silva, J.L., Conversion of wild-type p53 core domain into a conformation that mimics a hot-spot mutant (2003) Journal of Molecular Biology, 333 (2), pp. 443-451. , DOI 10.1016/j.jmb.2003.08.026
  • Bom, A.P., Freitas, M.S., Moreira, F.S., Ferraz, D., Sanches, D., Gomes, A.M., Valente, A.P., Silva, J.L., The p53 core domain is a molten globule at low pH: Functional implications of a partially unfolded structure (2010) J. Biol. Chem., 285, pp. 2857-2866
  • Gunbin, K.V., Suslov, V.V., Turnaev, I.I., Afonnikov, D.A., Kolchanov, N.A., Molecular evolution of cyclin proteins in animals and fungi (2011) BMC Evol. Biol., 11, p. 224
  • Kim, H.Y., Cho, Y., Structural similarity between the pocket region of retinoblastoma tumour suppressor and the cyclin-box (1997) Nat. Struct. Biol., 4, pp. 390-395
  • Han, J.-H., Batey, S., Nickson, A.A., Teichmann, S.A., Clarke, J., The folding and evolution of multidomain proteins (2007) Nature Reviews Molecular Cell Biology, 8 (4), pp. 319-330. , DOI 10.1038/nrm2144, PII NRM2144
  • Brockwell, D.J., Radford, S.E., Intermediates: Ubiquitous species on folding energy landscapes? (2007) Current Opinion in Structural Biology, 17 (1), pp. 30-37. , DOI 10.1016/j.sbi.2007.01.003, PII S0959440X07000048, Foldinf and Binding / Protein-Nucleic Interactions
  • Silva, J.L., Cordeiro, Y., Foguel, D., Protein folding and aggregation: Two sides of the same coin in the condensation of proteins revealed by pressure studies (2006) Biochim. Biophys. Acta, 1764, pp. 443-451
  • Xiao, S., Raleigh, D.P., A critical assessment of putative gate-keeper interactions in the villin headpiece helical subdomain (2010) J. Mol. Biol., 401, pp. 274-285
  • Robertson, A.D., Murphy, K.P., Protein structure and the energetics of protein stability (1997) Chem. Rev., 97, pp. 1251-1268
  • Bullock, A.N., Henckel, J., Dedecker, B.S., Johnson, C.M., Nikolova, P.V., Proctor, M.R., Lane, D.P., Fersht, A.R., Thermodynamic stability of wild-type and mutant p53 core domain (1997) Proceedings of the National Academy of Sciences of the United States of America, 94 (26), pp. 14338-14342. , DOI 10.1073/pnas.94.26.14338
  • Butler, J.S., Loh, S.N., Folding and misfolding mechanisms of the p53 DNA binding domain at physiological temperature (2006) Protein Science, 15 (11), pp. 2457-2465. , http://www.proteinscience.org/cgi/reprint/15/11/2457.pdf, DOI 10.1110/ps.062324206
  • Butler, J.S., Loh, S.N., Kinetic partitioning during folding of the p53 DNA binding domain (2005) Journal of Molecular Biology, 350 (5), pp. 906-918. , DOI 10.1016/j.jmb.2005.05.060, PII S0022283605006157
  • Ano Bom, A.P., Rangel, L.P., Costa, D.C., De Oliveira, G.A., Sanches, D., Braga, C.A., Gava, L.M., Silva, J.L., Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: Implications for cancer (2012) J. Biol. Chem., 287, pp. 28152-28162
  • Xu, J., Reumers, J., Couceiro, J.R., De Smet, F., Gallardo, R., Rudyak, S., Cornelis, A., Schymkowitz, J., Gain of function of mutant p53 by coaggregation with multiple tumor suppressors (2011) Nat. Chem. Biol., 7, pp. 285-295
  • Kratzke, R.A., Otterson, G.A., Hogg, A., Coxon, A.B., Geradts, J., Cowell, J.K., Kaye, F.J., Partial inactivation of the RB product in a family with incomplete penetrance of familial retinoblastoma and benign retinal tumors (1994) Oncogene, 9 (5), pp. 1321-1326
  • Park, Y., Kubo, A., Komiya, T., Coxon, A., Beebe, K., Neckers, L., Meltzer, P.S., Kaye, F.J., Low-penetrant RB allele in small-cell cancer shows geldanamycin instability and discordant expression with mutant ras (2008) Cell Cycle, 7, pp. 2384-2391
  • Otterson, G.A., Modi, S., Nguyen, K., Coxon, A.B., Kaye, F.J., Temperature-sensitive RB mutations linked to incomplete penetrance of familial retinoblastoma 12 families (1999) American Journal of Human Genetics, 65 (4), pp. 1040-1046. , DOI 10.1086/302581
  • Huh, K., Zhou, X., Hayakawa, H., Cho, J.-Y., Libermann, T.A., Jin, J., Harper, J.W., Munger, K., Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor (2007) Journal of Virology, 81 (18), pp. 9737-9747. , DOI 10.1128/JVI.00881-07
  • Singh, M., Krajewski, M., Mikolajka, A., Holak, T.A., Molecular determinants for the complex formation between the retinoblastoma protein and LXCXE sequences (2005) Journal of Biological Chemistry, 280 (45), pp. 37868-37876. , DOI 10.1074/jbc.M504877200
  • Tokuriki, N., Tawfik, D.S., Protein dynamism and evolvability (2009) Science, 324, pp. 203-207

Citas:

---------- APA ----------
Chemes, L.B., Noval, M.G., Sánchez, I.E. & De Prat-Gay, G. (2013) . Folding of a cyclin box: Linking multitarget binding to marginal stability, oligomerization, and aggregation of the retinoblastoma tumor suppressor ab pocket domain. Journal of Biological Chemistry, 288(26), 18923-18938.
http://dx.doi.org/10.1074/jbc.M113.467316
---------- CHICAGO ----------
Chemes, L.B., Noval, M.G., Sánchez, I.E., De Prat-Gay, G. "Folding of a cyclin box: Linking multitarget binding to marginal stability, oligomerization, and aggregation of the retinoblastoma tumor suppressor ab pocket domain" . Journal of Biological Chemistry 288, no. 26 (2013) : 18923-18938.
http://dx.doi.org/10.1074/jbc.M113.467316
---------- MLA ----------
Chemes, L.B., Noval, M.G., Sánchez, I.E., De Prat-Gay, G. "Folding of a cyclin box: Linking multitarget binding to marginal stability, oligomerization, and aggregation of the retinoblastoma tumor suppressor ab pocket domain" . Journal of Biological Chemistry, vol. 288, no. 26, 2013, pp. 18923-18938.
http://dx.doi.org/10.1074/jbc.M113.467316
---------- VANCOUVER ----------
Chemes, L.B., Noval, M.G., Sánchez, I.E., De Prat-Gay, G. Folding of a cyclin box: Linking multitarget binding to marginal stability, oligomerization, and aggregation of the retinoblastoma tumor suppressor ab pocket domain. J. Biol. Chem. 2013;288(26):18923-18938.
http://dx.doi.org/10.1074/jbc.M113.467316