Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The possible involvement of apoplastic reactive oxygen species produced by the oxidation of free polyamines in the leaf growth of salinized maize has been studied here. Salt treatment increased the apoplastic spermine and spermidine levels, mainly in the leaf blade elongation zone. The total activity of polyamine oxidase was up to 20-fold higher than that of the copper-containing amine oxidase. Measurements of H2O2, ·O2-, and HO· production in the presence or absence of the polyamine oxidase inhibitors 1,19-bis- (ethylamine)-5,10,15 triazanonadecane and 1,8-diamino-octane suggest that, in salinized plants, the oxidation of free apoplastic polyamines by polyamine oxidase by would be the main source of reactive oxygen species in the elongation zone of maize leaf blades. This effect is probably due to increased substrate availability. Incubation with 200 μM spermine doubled segment elongation, whereas the addition of 1,19-bis-(ethylamine)-5,10,15 triazanonadecane and 1,8-diamino-octane to 200 μM spermine attenuated and reversed the last effect, respectively. Similarly, the addition of MnCl2 (an ·O2- dismutating agent) or the HO· scavenger sodium benzoate along with spermine, annulled the elongating effect of the polyamine on the salinized segments. As a whole, the results obtained here demonstrated that, under salinity, polyamine oxidase activity provides a significant production of reactive oxygen species in the apoplast which contributes to 25-30% of the maize leaf blade elongation.

Registro:

Documento: Artículo
Título:Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress
Autor:Rodríguez, A.A.; Maiale, S.J.; Menéndez, A.B.; Ruiz, O.A.
Filiación:Unidad de Biotecnología 1, Inst. de Invest. Biotecnologicas-Inst. Tecn. de Chascomus, Camino de Circunvalación Laguna, Km 6 CC 164 (B7130IWA), Chascomús, Argentina
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, DBBE, Argentina
Palabras clave:Growth; Maize; Polyamine oxidase; Polyamines; Reactive oxygen species; Salinity; oxidoreductase; polyamine oxidase; sodium chloride; vegetable protein; article; enzymology; growth, development and aging; maize; metabolism; physiological stress; physiology; plant leaf; Oxidoreductases Acting on CH-NH Group Donors; Plant Leaves; Plant Proteins; Sodium Chloride; Stress, Physiological; Zea mays; Zea mays
Año:2009
Volumen:60
Número:15
Página de inicio:4249
Página de fin:4262
DOI: http://dx.doi.org/10.1093/jxb/erp256
Título revista:Journal of Experimental Botany
Título revista abreviado:J. Exp. Bot.
ISSN:00220957
CODEN:JEBOA
CAS:oxidoreductase, 9035-73-8, 9035-82-9, 9037-80-3, 9055-15-6; sodium chloride, 7647-14-5; Oxidoreductases Acting on CH-NH Group Donors, 1.5.-; Plant Proteins; Sodium Chloride, 7647-14-5; polyamine oxidase, 1.5.3.11
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00220957_v60_n15_p4249_Rodriguez.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00220957_v60_n15_p4249_Rodriguez

Referencias:

  • An, Z., Jing, W., Liu, Y., Zhang, W., Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba (2008) Journal of Experimental Botany, 59, pp. 815-825
  • Angelini, R., Federico, R., Bonfante, P., Maize polyamine oxidase: Antibody production and ultrastructural localization (1995) Journal of Plant Physiology, 145, pp. 686-692
  • Angelini, R., Tisi, A., Rea, G., Chen, M.M., Botta, M., Federico, R., Cona, A., Involvement of polyamine oxidase in wound healding (2008) Plant Physiology, 146, pp. 162-177
  • Aziz, A., Martin-Tanguy, J., Larher, F., Stress-induced changes polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride (1998) Physiologia Plantarum, 104, pp. 195-202
  • Bais, H.P., George, J., Ravishankar, G.A., Influence of polyamines on growth of hairy root cultures of witloof chicory (Cichorium intybus L. cv. Lucknow Local) and formation of coumarins (1999) Journal of Plant Growth Regulation, 18, pp. 33-37
  • Bais, H.P., Vepachedu, R., Gilroy, S., Callaway, R.M., Vivanco, J.M., Allelopathy and exotic plant invasion: From molecules and genes to species interactions (2003) Science, 301, pp. 1377-1380
  • Borrell, A., Culianez-Macia, F.A., Altabella, T., Besford, R.T., Flores, D., Tiburcio, A.F., Arginine decarboxylase is localized in chloroplasts (1995) Plant Physiology, 109, pp. 771-776
  • Bouchereau, A., Aziz, A., Larher, F., Martin-Tanguy, J., Polyamines and environmental challenges: Recent development (1999) Plant Science, 140, pp. 103-125
  • Bradford, M., A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding (1976) Analytical Biochemistry, 72, pp. 248-254
  • Capell, T., Bassie, L., Christou, P., Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress (2004) Proceedings of the National Academy of Sciences, USA, 101, pp. 9909-9914
  • Carol, R.J., Dolan, L., The role of reactive oxygen species in cell growth: Lessons from root hairs (2006) Journal of Experimental Botany, 57, pp. 1829-1834
  • Cona, A., Cenci, F., Cervelli, M., Federico, R., Mariottini, P., Moreno, S., Angelini, R., Polyamine oxidase, a hydrogen peroxide-producing enzyme, is up-regulated by light and down-regulated by auxin in the outer tissues of the maize mesocotyl (2003) Plant Physiology, 131, pp. 803-813
  • Cona, A., Manetti, F., Leone, R., Corelli, F., Tavladoraki, P., Polticelli, F., Botta, M., Molecular basis for the binding of competitive inhibitors of maize polyamine oxidase (2004) Biochemistry, 43, pp. 3426-3435
  • Cona, A., Rea, G., Angelini, R., Federico, R., Tavladoraki, P., Functions of amine oxidases in plant development and defence (2006) Trends in Plant Science, 11, pp. 80-88
  • Cona, A., Rea, G., Botta, M., Corelli, F., Federico, R., Angelini, R., Flavin-containing polyamine oxidase is a hydrogen peroxide source in the oxidative response to the protein phosphatase inhibitor cantharidin in Zea mays L (2006) Journal of Experimental Botany, 57, pp. 2277-2289
  • Cosgrove, D.J., Enzymes and other agents that enhance cell wall extensibility (1999) Annual Review of Plant Physiology and Molecular Plant Biology, 50, pp. 391-417
  • Das, S., Bose, A., Ghosh, B., Effect of salt stress on polyamine metabolism in Brassica campestris (1995) Phytochemistry, 39, pp. 283-285
  • Das, K., Misra, H., Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines (2004) Molecular and Cellular Biochemistry, 262, pp. 127-133
  • Delis, C., Dimou, M., Flemetakis, E., Aivalakis, G., Katinakis, P., A root- and hypocotyl-specific gene coding for copper-containing amine oxidase is related to cell expansion in soybean seedlings (2006) Journal of Experimental Botany, 57, pp. 101-111
  • Demidchik, V., Maathuis, F.J.M., Physiological roles of non-selective cation channels in plants: From salt stress to signalling and development (2007) New Phytologist, 175, pp. 387-404
  • De Souza, I.R.P., MacAdam, J.W., Gibberellic acid and dwarfism effects on the growth dynamics of B73 maize (Zea mays L.) leaf blades: A transient increase in apoplastic peroxidase activity precedes cessation of cell elongation (2001) Journal of Experimental Botany, 52, pp. 1673-1682
  • Di Rienzo, J.A., Guzman, A.W., Casanoves, F., A multiple comparisons method based on the distribution of the root node distance of a binary tree (2002) Journal of Agricultural, Biological, and Environmental Statistics, 7, pp. 129-142
  • Evans, P.T., Malmberg, R.L., (1989) Do Polyamines Have Roles in Plant Development? Annual Review of Plant Physiology and Plant Molecular Biology, 40, pp. 235-269
  • Federico, R., Angelini, R., (1991) Polyamine Catabolism in Plants, pp. 41-56. , Slocum RD, Flores HE, eds. Biochemistry and physiology of polyamines in plants. Boca Raton, FL, USA: CRC Press
  • Flowers, T.J., Hajibagheri, M.A., Yeo, A.R., Ion accumulation in the cell walls of rice plants growing under saline conditions: Evidence for the Oertli hypothesis (1991) Plant, Cell and Environment, 14, pp. 319-325
  • Foreman, J., Demidchik, V., Bothwell, J.H.F., Reactive oxygen species produced by NADPH oxidase regulate plant cell growth (2003) Nature, 422, pp. 442-446
  • Frahry, G., Schopfer, P., Inhibition of O 2-reducing activity of horseradish peroxidase by diphenyleneiodonium (1998) Phytochemistry, 48, pp. 223-227
  • Frahry, G., Schopfer, P., NADH-stimulated, cyanide-resistant superoxide production in maize coleoptiles analyzed with a tetrazolium-based assay (2001) Planta, 212, pp. 175-183
  • Fry, S.C., Oxidative scission of plant cell wall polysaccharides by ascorbate induced hydroxyl radicals (1998) Biochemical Journal, 332, pp. 507-515
  • Fry, S.C., Willis, S.C., Paterson, A.E.K., Intraprotoplasmic and wall-localised formation of arabinoxylan-bound diferulates and larger ferulate coupling-products in maize cell-suspension cultures (2000) Planta, 211, pp. 21-29
  • Fry, S.C., Dumville, J.C., Miller, J.G., Fingerprinting of polysaccharides attacked by hydroxyl radicals in vitro and in the cell walls of ripening pear fruit (2001) Biochemical Journal, 357, pp. 729-737
  • Galston, A.W., Sawhney, R.K., Polyamines in plant physiology (1990) Plant Physiology, 94, pp. 406-410
  • Haber, F., Weiss, J., On the catalysis of hydroperoxide (1932) Naturwissenschaften, 20, pp. 948-950
  • Hernandez, J.A., Ferrer, M.A., Jimenez, A., Ros Barcelo, A., Sevilla, F., Antioxidant systems and O~H 2O 2 production in the apoplast of pea leaves Its relation with salt-induced necrotic lesions in minor veins (2001) Plant Physiology, 127, pp. 817-831
  • Hoagland, D.R., Arnon, D.I., The water-culture method for growing plants without soil (1950) California Agricultural Experiment Station Circular, 347, pp. 1-32
  • Jimenez-Bremont, J.F., Ruiz, O.A., Rodríguez-Kessler, M., Modulation of spermidine and spermine levels in maize seedlings subjected to long-term salt stress (2007) Plant Physiology and Biochemistry, 45, pp. 812-821
  • Kasinathan, V., Wingler, A., Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana (2004) Physiologia Plantarum, 121, pp. 101-107
  • Kasukabe, Y., He, L., Nada, K., Misawa, S., Ihara, I., Tachibana, S., Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana (2004) Plant and Cell Physiology, 45, pp. 712-722
  • Kaur-Sawhney, R., Tiburcio, A.F., Altabella, T., Galston, A.W., Polyamines in plants: An overview (2003) Journal of Cell and Molecular Biology, 2, pp. 1-12
  • Kawano, T., Pinontoan, R., Uozumi, N., Miyake, C., Asada, K., Kolattukudy, P.E., Muto, S., Aromatic monoamine-induced immediate oxidative burst leading to an increase in cytosolic Ca 2+ concentration in tobacco suspension culture (2000) Plant and Cell Physiology, 41, pp. 1251-1258
  • Kawano, T., Pinontoan, R., Uozumi, N., Morimitsu, Y., Miyake, C., Asada, K., Muto, S., Phenylethylamine-induced generation of reactive oxygen species and ascorbate free radicals in tobacco suspension culture: Mechanism for oxidative burst mediating Ca 2+influx (2000) Plant and Cell Physiology, 41, pp. 1259-1266
  • Kosegarten, H.U., Hoffmann, B., Mengel, K., Apoplastic pH and Fe 3+reduction in intact sunflower leaves (1999) Plant Physiology, 121, pp. 1069-1079
  • Krishnamurthy, R., Bhagwat, K.A., Polyamines as modulators of salt tolerance in rice cultivars (1989) Plant Physiology, 91, pp. 500-504
  • Kumria, R., Rajam, M.V., Ornithine decarboxylase transgene in tobacco affects polyamine metabolism, in vitro morphogenesis and response to salt stress (2002) Journal of Plant Physiology, 159, pp. 983-990
  • Kunapuli, S.P., Vaidyanathan, C.S., Purification and characterization of a new indole oxygenase from the leaves of Tecoma stans L (1983) Plant Physiology, 71, pp. 19-23
  • Kusano, T., Yamaguchi, K., Berberich, T., Takahashi, Y., Advances in polyamine research in 2007 (2007) Journal of Plant Research, 120, pp. 345-350
  • Larsson, C., (1985) Plasma Membranes. In: Linskens H, Jackson J, Eds. Modern Methods of Plant Analysis. Cell Components, New Series, 1, pp. 85-103. , Berlin, Heidelberg: Springer
  • Li, Z.C., Rapid purification of polyamines oxidase from oat primary leaves (1993) Phytochemistry, 34, pp. 611-612
  • Lim, T.S., Chitra, T.R., Han, P., Pua, E.C., Yu, H., Cloning and characterization of Arabidopsis and Brassica juncea flavin-containing amine oxidases (2006) Journal of Experimental Botany, 57, pp. 4155-4169
  • Lineweaver, H., Burk, D., The determination of enzyme dissociation constants (1934) Journal of American Chemical Society, 56, pp. 658-666
  • Liszkay, A., Van Der Zalm, E., Schopfer, P., Production of reactive oxygen intermediates (0~, H 2O 2,and-OH) by maize roots and their role in wall loosening and elongation growth (2004) Plant Physiology, 136, pp. 3114-3123
  • Lohaus, G., Hussmann, M., Pennewiss, K., Schneider, H., Zhu, J.J., Sattelmacher, B., Solute balance of a maize (Zea mays L.) source leaf as affected by salt treatment with special emphasis on phloem retranslocation and ion leaching (2000) Journal of Experimental Botany, 51, pp. 1721-1732
  • MacAdam, J.W., Sharp, R.E., Nelson, C.J., Peroxidase activity in the leaf elongation zone of tall fescue. II. Spatial distribution of apoplastic bound peroxidase activity in genotypes differing in length of the elongation zone (1992) Plant Physiology, 99, pp. 879-885
  • Maiale, S., Marina, M., Sánchez, D.H., Pieckenstain, F.L., Ruiz, O.A., In vitro and in vivo inhibition of plant polyamine oxidase activity by polyamine analogues (2008) Phytochemistry, 69, pp. 2552-2558
  • Maiale, S., Sánchez, D.H., Guirado, A., Vidal, A., Ruiz, O.A., Spermine accumulation under salt stress (2004) Journal of Plant Physiology, 161, pp. 35-42
  • Marina, M., Maiale, S.J., Rossi, F.R., Romero, M.F., Rivas, E.I., Garriz, A., Ruiz, O.A., Pieckenstain, F.L., Apoplastic polyamine oxidation plays different roles in local responses of tobacco to infection by the necrotrophic fungus Sclerotinia sclerotiorum and the biotrophic bacterium Pseudomonas viridiflava (2008) Plant Physiology, 147, pp. 2164-2178
  • McAinsh, M.R., Clayton, H., Mansfield, T.A., Hetherington, A.M., Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress (1996) Plant Physiology, 111, pp. 1031-1042
  • Miller, A.R., Oxidation of cell wall polysaccharides by hydrogen peroxide: A potential mechanism for cell wall breakdown in plants (1986) Biochemical and Biophysical Research Communications, 141, pp. 238-244
  • Moschou, P.N., Paschalidis, K.A., Delis, I.D., Andriopoulou, A.H., Lagiotis, G.D., Yakoumakis, D.I., Roubelakis-Angelakis, K.A., Signatures that direct tolerance responses in tobacco (2008) The Plant Cell, 20, pp. 1708-1724
  • O'Donnell, V.B., Tew, D.G., Jones, O.T.G., England, P.J., Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase (1993) Biochemical Journal, 290, pp. 41-49
  • Neves-Piestun, B.G., Bernstein, N., Salinity-induced inhibition of leaf elongation in maize is not mediated by changes in cell wall acidification capacity (2001) Plant Physiology, 125, pp. 1419-1428
  • Paschalidis, K.A., Roubelakis-Angelakis, K.A., Sites and regulation of polyamine catabolism in the tobacco plant Correlations with cell division/expansion, cell cycle progression, and vascular development (2005) Plant Physiology, 138, pp. 2174-2184
  • Pei, Z.-M., Murata, Y., Benning, G., Thomine, S., Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells (2000) Nature, 406, pp. 731-734
  • Pistocchi, R., Keller, F., Bagni, N., Matile, P., Transport and subcellular localization of polyamines in carrot protoplasts and vacuoles (1988) Plant Physiology, 87, pp. 514-518
  • Rodríguez, A.A., Decreased reactive oxygen species concentration in the elongation zone contributes to the reduction in maize leaf growth under salinity (2004) Journal of Experimental Botany, 55, pp. 1383-1390
  • Rodríguez, A.A., Grunberg, K.A., Taleisnik, E., Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension (2002) Plant Physiology, 129, pp. 1627-1632
  • Rodríguez, A.A., Lascano, R., Bustos, D., Taleisnik, E., Salinity-induced decrease in NADPH oxidase activity in the maize leaf blade elongation zone (2007) Journal of Plant Physiology, 164, pp. 223-230
  • Sagi, M., Fluhr, R., Superoxide production by plant homologues of the gp91 phoxNADPH oxidase Modulation of activity by calcium and by tobacco mosaic virus infection (2001) Plant Physiology, 126, pp. 1281-1290
  • Sanchez, D.H., Cuevas, J.C., Chiesa, M.A., Ruiz, O.A., Free spermidine and spermine content in Lotus glaber under long-term salt stress (2005) Plant Science, 168, pp. 541-546
  • Sannazzaro, A.I., Echeverria, M., Albertó, E.O., Ruiz, O.A., Menéndez, A.B., Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza (2007) Plant Physiology and Biochemistry, 45, pp. 39-46
  • Schopfer, P., Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: Implications for the control of elongation growth (2001) Plant Journal, 28, pp. 679-688
  • Schopfer, P., Plachy, C., Frahry, G., Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid (2001) Plant Physiology, 125, pp. 1591-1602
  • Schweikert, C., Liszkay, A., Schopfer, P., Scission of polysaccharides and peroxidase-generated hydroxyl radicals (2000) Phytochemistry, 53, pp. 565-570
  • Serrano, R., Characterization of the plasma membrane ATPase of Saccharomyces cerevisiae (1978) Molecular and Cellular Biochemistry, 22, pp. 51-63
  • Simon-Sarkadi, L., Kocsy, G., Sebestyen, Z., Effect of salt stress on free amino acid and polyamine content in cereals (2002) Acta Biologica Szegediensis, 46 (3-4), pp. 73-75
  • Slocum, R.D., (1991) Tissue and Subcellular Localisation of Polyamines and Enzymes of Polyamine Metabolism, pp. 93-103. , Slocum RD, Flores HE, eds. Biochemistry and physiology of polyamines in plants. Boca Raton, FL, USA: CRC Press
  • Smith, T.A., Further properties of the polyamine oxidase from oat seedlings (1977) Phytochemistry, 16, pp. 1647-1649
  • Speer, M., Kaiser, W.M., Ion relations of symplastic and apoplastic space in leaves from Spinacia oleracea L. and Pisum sativum L. under salinity (1991) Plant Physiology, 97, pp. 990-997
  • Steiner, N., Santa-Catarina, C., Silveira, V., Floh, E.I.S., Guerra, M.P., Polyamine effects on growth and endogenous hormones levels in Araucaria angustifolia embryogenic cultures (2007) Plant Cell, Tissue and Organ Culture, 89, pp. 55-62
  • Tavladoraki, P., Schininàb, M.E., Cecconi, F., Di Agostino, S., Manera, F., Rea, G., Mariottini, P., Angelini, R., Maize polyamine oxidase: Primary structure from protein and cDNA sequencing (1998) FEBS Letters, 426, pp. 62-66
  • Tiburcio, A.F., Altabella, T., Borrell, A., Masgrau, C., Polyamine metabolism and its regulation (1997) Physiologia Plantarum, 100, pp. 664-674
  • Torrigiani, P., Serafini-Fracassini, D., Biondi, S., Bagni, N., Evidence for the subcellular localization of polyamines and their biosynthetic enzymes in plant cells (1986) Journal of Plant Physiology, 124, pp. 23-29
  • Walden, R., Cordeiro, A., Tiburcio, A.F., Polyamines: Small molecules triggering pathways in plant growth and development (1997) Plant Physiology, 113, pp. 1009-1013
  • Wi, S.J., Kim, W.T., Park, K.Y., Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants (2006) Plant Cell Reports, 25, pp. 1111-1121
  • Yamaguchi, Y., Takahashi, T., Berberich, A., Imai, A., Miyazaki, T., Takahashi, A., Kusano, M.T., The polyamine spermine protects against high salt stress in Arabidopsis thaliana (2006) FEBS Letters, 580, pp. 6783-6788
  • Yoda, H., Yamaguchi, Y., Sano, H., Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants (2003) Plant Physiology, 132, pp. 1973-1981
  • Zhao, F.G., Sun, C., Liu, Y.L., Zhang, W.H., Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings (2003) Acta Botanica Sinica, 45, pp. 295-300
  • Zapata, J.P., Serrano, M., Pretel, M.T., Amoros, A., Botella, M.A., Polyamines and ethylene changes during germination of different plant species under salinity (2004) Plant Science, 167, pp. 781-788

Citas:

---------- APA ----------
Rodríguez, A.A., Maiale, S.J., Menéndez, A.B. & Ruiz, O.A. (2009) . Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress. Journal of Experimental Botany, 60(15), 4249-4262.
http://dx.doi.org/10.1093/jxb/erp256
---------- CHICAGO ----------
Rodríguez, A.A., Maiale, S.J., Menéndez, A.B., Ruiz, O.A. "Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress" . Journal of Experimental Botany 60, no. 15 (2009) : 4249-4262.
http://dx.doi.org/10.1093/jxb/erp256
---------- MLA ----------
Rodríguez, A.A., Maiale, S.J., Menéndez, A.B., Ruiz, O.A. "Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress" . Journal of Experimental Botany, vol. 60, no. 15, 2009, pp. 4249-4262.
http://dx.doi.org/10.1093/jxb/erp256
---------- VANCOUVER ----------
Rodríguez, A.A., Maiale, S.J., Menéndez, A.B., Ruiz, O.A. Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress. J. Exp. Bot. 2009;60(15):4249-4262.
http://dx.doi.org/10.1093/jxb/erp256