Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In neuroendocrine cells, such as adrenal chromaffin cells, the exocytosis of hormone-filled vesicles is triggered by a localized Ca2+ increase that develops after the activation of voltage-dependent Ca2+ channels. To reach the fusion competent state, vesicles have to go through a series of maturation steps that involve the detachment from cytoskeletal proteins, docking and priming. However, the fusion readiness of vesicles will also depend on their proximity to the calcium source. The immediately releasable pool is a small group of ready-to-fuse vesicles, whose fusion is tightly coupled to Ca2+ entry through channels. Recent work indicates that such coupling is not produced by a random distribution between vesicles and channels, but would be the result of a specific interaction of immediately releasable vesicles with particular Ca2+ channel subtypes. The immediately releasable pool is able to sustain, with high efficiency, the secretion triggered by the small and localized Ca2+ gradients produced by brief depolarizations at low frequencies, like action potentials at basal conditions in adrenal chromaffin cells. © 2010 International Society for Neurochemistry.

Registro:

Documento: Artículo
Título:The immediately releasable vesicle pool: Highly coupled secretion in chromaffin and other neuroendocrine cells
Autor:Álvarez, Y.D.; Marengo, F.D.
Filiación:Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias, Ciudad Universitaria, 20 piso, Buenos Aires, Argentina
Palabras clave:chromaffin cells; exocytosis; P/Q channels; voltage-dependent Ca2+ channels; calcium channel; calcium ion; cytoskeleton protein; action potential; cell vacuole; chromaffin cell; depolarization; exocytosis; molecular docking; molecular interaction; neurosecretory cell; nonhuman; priority journal; review; stimulus response; synapse vesicle; Animals; Calcium Channels; Chromaffin Cells; Exocytosis; Humans; Neuroendocrine Cells; Synaptic Vesicles; Time Factors
Año:2011
Volumen:116
Número:2
Página de inicio:155
Página de fin:163
DOI: http://dx.doi.org/10.1111/j.1471-4159.2010.07108.x
Título revista:Journal of Neurochemistry
Título revista abreviado:J. Neurochem.
ISSN:00223042
CODEN:JONRA
CAS:calcium ion, 14127-61-8; Calcium Channels
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223042_v116_n2_p155_Alvarez

Referencias:

  • Albillos, A., Neher, E., Moser, T., R-Type Ca2+ channels are coupled to the rapid component of secretion in mouse adrenal slice chromaffin cells (2000) J. Neurosci., 20, pp. 8323-8330
  • Aldea, M., Jun, K., Shin, H.S., Andres-Mateos, E., Solis-Garrido, L.M., Montiel, C., Garcia, A.G., Albillos, A., A perforated patch-clamp study of calcium currents and exocytosis in chromaffin cells of wild-type and alpha(1A) knockout mice (2002) J. Neurochem., 81, pp. 911-921
  • Alvarez, Y.D., Ibanez, L.I., Uchitel, O.D., Marengo, F.D., P/Q Ca2+ channels are functionally coupled to exocytosis of the immediately releasable pool in mouse chromaffin cells (2008) Cell Calcium, 43, pp. 155-164
  • Andres-Mateos, E., Renart, J., Cruces, J., Solis-Garrido, L.M., Serantes, R., Lucas-Cerrillo, A.M., Aldea, M., Montiel, C., Dynamic association of the Ca2+ channel alpha1A subunit and SNAP-25 in round or neurite-emitting chromaffin cells (2005) Eur. J. Neurosci., 22, pp. 2187-2198
  • Artalejo, C.R., Adams, M.E., Fox, A.P., Three types of Ca2+ channel trigger secretion with different efficacies in chromaffin cells (1994) Nature, 367, pp. 72-76
  • Ashery, U., Varoqueaux, F., Voets, T., Betz, A., Thakur, P., Koch, H., Neher, E., Rettig, J., Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells (2000) EMBO J., 19, pp. 3586-3596
  • Atwood, H.L., Karunanithi, S., Diversification of synaptic strength: Presynaptic elements (2002) Nat. Rev. Neurosci., 3, pp. 497-516
  • Augustine, G.J., Neher, E., Calcium requirements for secretion in bovine chromaffin cells (1992) J. Physiol., 450, pp. 247-271
  • Barg, S., Eliasson, L., Renstrom, E., Rorsman, P., A subset of 50 secretory granules in close contact with L-type Ca 2+ channels accounts for first-phase insulin secretion in mouse beta-cells (2002) Diabetes, 51, pp. S74-S82
  • Barg, S., Ma, X., Eliasson, L., Fast exocytosis with few Ca(2+) channels in insulin-secreting mouse pancreatic B cells (2001) Biophys. J., 81, pp. 3308-3323
  • Bauer, C.S., Woolley, R.J., Teschemacher, A.G., Seward, E.P., Potentiation of exocytosis by phospholipase C-coupled G-protein-coupled receptors requires the priming protein Munc13-1 (2007) J. Neurosci., 27, pp. 212-219
  • Becherer, U., Moser, T., Stuhmer, W., Oheim, M., Calcium regulates exocytosis at the level of single vesicles (2003) Nat. Neurosci., 6, pp. 846-853
  • Borst, J.G.G., Helmchen, F., Sakmann, B., Pre- and post synaptic whole-cell recording in the medial nucleus of the trapezoid body of the rat (1995) J. Physiol., 489, pp. 825-840
  • Brandt, B.L., Hagiwara, S., Kidokoro, Y., Miyazaki, S., Action potentials in the rat chromaffin cell and effects of acetylcholine (1976) J. Physiol., 263, pp. 417-439
  • Carabelli, V., Marcantoni, A., Comunanza, V., Carbone, E., Fast exocytosis mediated by T- and L-type channels in chromaffin cells: Distinct voltage-dependence but similar Ca2+ -dependence (2007) Eur. Biophys. J., 36, pp. 753-762
  • Chan, S.A., Polo-Parada, L., Landmesser, L.T., Smith, C., Adrenal chromaffin cells exhibit impaired granule trafficking in NCAM knockout mice (2005) J. Neurophysiol., 94, pp. 1037-1047
  • Chan, S.A., Polo-Parada, L., Smith, C., Action potential stimulation reveals an increased role for P/Q-calcium channel-dependent exocytosis in mouse adrenal tissue slices (2005) Arch. Biochem. Biophys., 435, pp. 65-73
  • Chow, R.H., Klingauf, J., Neher, E., Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells (1994) Proc. Natl Acad. Sci. USA, 91, pp. 12765-12769
  • Dinkelacker, V., Voets, T., Neher, E., Moser, T., The readily releasable pool of vesicles in chromaffin cells is replenished in a temperature-dependent manner and transiently overfills at 37 degrees C (2000) J. Neurosci., 20, pp. 8377-8383
  • Elhamdani, A., Zhou, Z., Artalejo, C.R., Timing of dense-core vesicle exocytosis depends on the facilitation L-type Ca channel in adrenal chromaffin cells (1998) J. Neurosci., 18, pp. 6230-6240
  • Eliasson, L., Renstrom, E., Ding, W.G., Proks, P., Rorsman, P., Rapid ATP-dependent priming of secretory granules precedes Ca(2+) -induced exocytosis in mouse pancreatic B-cells (1997) J. Physiol., 503 (PART 2), pp. 399-412
  • Engisch, K.L., Nowycky, M.C., Calcium dependence of large dense-cored vesicle exocytosis evoked by calcium influx in bovine adrenal chromaffin cells (1996) J. Neurosci., 16, pp. 1359-1369
  • Fulop, T., Radabaugh, S., Smith, C., Activity-dependent differential transmitter release in mouse adrenal chromaffin cells (2005) J. Neurosci., 25, pp. 7324-7332
  • Gandia, L., Borges, R., Albillos, A., Garcia, A.G., Multiple calcium channel subtypes in isolated rat chromaffin cells (1995) Pflugers Arch., 430, pp. 55-63
  • García, A.G., García-De-Diego, A.M., Gandía, L., Borges, R., García-Sancho, J., Calcium signaling and exocytosis in adrenal chromaffin cells (2006) Physiol. Rev., 86, pp. 1093-1131
  • Ge, Q., Dong, Y.M., Hu, Z.T., Wu, Z.X., Xu, T., Characteristics of Ca2+-exocytosis coupling in isolated mouse pancreatic beta cells (2006) Acta Pharmacol. Sin., 27, pp. 933-938
  • Giancippoli, A., Novara, M., De Luca, A., Baldelli, P., Marcantoni, A., Carbone, E., Carabelli, V., Low-threshold exocytosis induced by cAMP-recruited CaV3.2 (alpha1H) channels in rat chromaffin cells (2006) Biophys. J., 90, pp. 1830-1841
  • Giovannucci, D.R., Stuenkel, E.L., Regulation of secretory granule recruitment and exocytosis at rat neurohypophysial nerve endings (1997) J. Physiol., 498 (PART 3), pp. 735-751
  • Harkins, A.B., Cahill, A.L., Powers, J.F., Tischler, A.S., Fox, A.P., Deletion of the synaptic protein interaction site of the N-type (CaV2.2) calcium channel inhibits secretion in mouse pheochromocytoma cells (2004) Proc. Natl Acad. Sci. USA, 101, pp. 15219-15224
  • Heinemann, C., Von Ruden, L., Chow, R.H., Neher, E., A two-step model of secretion control in neuroendocrine cells (1993) Pflugers Arch., 424, pp. 105-112
  • Heinemann, C., Chow, R.H., Neher, E., Zucker, R.S., Kinetics of the secretory response in bovine chromaffin cells following flash photolysis of caged Ca2+ (1994) Biophys. J., 67, pp. 2546-2557
  • Hernandez-Guijo, J.M., De Pascual, R., Garcia, A.G., Gandia, L., Separation of calcium channel current components in mouse chromaffin cells superfused with low- and high-barium solutions (1998) Pflugers Arch., 436, pp. 75-82
  • Horrigan, F.T., Bookman, R.J., Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells (1994) Neuron, 13, pp. 1119-1129
  • Inchauspe, C.G., Martini, F.J., Forsythe, I.D., Uchitel, O.D., Functional compensation of P/Q by N-type channels blocks short-term plasticity at the calyx of held presynaptic terminal (2004) J. Neurosci., 24, pp. 10379-10383
  • Kim, S.J., Lim, W., Kim, J., Contribution of L- and N-type calcium currents to exocytosis in rat adrenal medullary chromaffin cells (1995) Brain Res., 675, pp. 289-296
  • Kits, K.S., De Vlieger, T.A., Kooi, B.W., Mansvelder, H.D., Diffusion barriers limit the effect of mobile calcium buffers on exocytosis of large dense core vesicles (1999) Biophys. J., 76, pp. 1693-1705
  • Klingauf, J., Neher, E., Modeling buffered Ca2+ diffusion near the membrane: Implications for secretion in neuroendocrine cells (1997) Biophys. J., 72, pp. 674-690
  • Lara, B., Gandia, L., Martinez-Sierra, R., Torres, A., Garcia, A.G., Q-type Ca2+ channels are located closer to secretory sites than L-type channels: Functional evidence in chromaffin cells (1998) Pflugers Arch., 435, pp. 472-478
  • Llinas, R., Sugimori, M., Silver, R.B., Microdomains of high calcium concentration in a presynaptic terminal (1992) Science, 256, pp. 677-679
  • Lomax, R.B., Michelena, P., Nunez, L., Garcia-Sancho, J., Garcia, A.G., Montiel, C., Different contributions of L- and Q-type Ca2+ channels to Ca2+ signals and secretion in chromaffin cell subtypes (1997) Am. J. Physiol., 272, pp. C476-C484
  • Lopez, I., Giner, D., Ruiz-Nuno, A., Fuentealba, J., Viniegra, S., Garcia, A.G., Davletov, B., Gutierrez, L.M., Tight coupling of the t-SNARE and calcium channel microdomains in adrenomedullary slices and not in cultured chromaffin cells (2007) Cell Calcium, 41, pp. 547-558
  • Lukyanetz, E.A., Neher, E., Different types of calcium channels and secretion from bovine chromaffin cells (1999) Eur. J. Neurosci., 11, pp. 2865-2873
  • Marengo, F.D., Calcium gradients and exocytosis in bovine adrenal chromaffin cells (2005) Cell Calcium, 38, pp. 87-99
  • Merrins, M.J., Stuenkel, E.L., Kinetics of Rab27a-dependent actions on vesicle docking and priming in pancreatic beta-cells (2008) J. Physiol., 586, pp. 5367-5381
  • Mochida, S., Westenbroek, R.E., Yokoyama, C.T., Zhong, H., Myers, S.J., Scheuer, T., Itoh, K., Catterall, W.A., Requirement for the synaptic protein interaction site for reconstitution of synaptic transmission by P/Q-type calcium channels (2003) Proc. Natl Acad. Sci. USA, 100, pp. 2819-2824
  • Moser, T., Neher, E., Rapid exocytosis in single chromaffin cells recorded from mouse adrenal slices (1997) J. Neurosci., 17, pp. 2314-2323
  • Neher, E., Vesicle pools and Ca2+ microdomains: New tools for understanding their roles in neurotransmitter release (1998) Neuron, 20, pp. 389-399
  • Neher, E., Zucker, R.S., Multiple calcium-dependent processes related to secretion in bovine chromaffin cells (1993) Neuron, 10, pp. 21-30
  • Novara, M., Baldelli, P., Cavallari, D., Carabelli, V., Giancippoli, A., Carbone, E., Exposure to cAMP and beta-adrenergic stimulation recruits Ca(V)3 T-type channels in rat chromaffin cells through Epac cAMP-receptor proteins (2004) J. Physiol., 558, pp. 433-449
  • Oré, L.O., Artalejo, A.R., Intracellular Ca2+ microdomain-triggered exocytosis in neuroendocrine cells (2005) Trends Neurosci., 27, pp. 113-115
  • Polo-Parada, L., Chan, S.A., Smith, C., An activity-dependent increased role for L-type calcium channels in exocytosis is regulated by adrenergic signaling in chromaffin cells (2006) Neuroscience, 143, pp. 445-459
  • Prakriya, M., Lingle, C.J., BK channel activation by brief depolarizations requires Ca2+ influx through L- and Q-type Ca2+ channels in rat chromaffin cells (1999) J. Neurophysiol., 81, pp. 2267-2278
  • Rettig, J., Sheng, Z.H., Kim, D.K., Hodson, C.D., Snutch, T.P., Catterall, W.A., Isoform-specific interaction of the alpha1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25 (1996) Proc. Natl Acad. Sci. USA, 93, pp. 7363-7368
  • Rettig, J., Heinemann, C., Ashery, U., Sheng, Z.H., Yokoyama, C.T., Catterall, W.A., Neher, E., Alteration of Ca2+ dependence of neurotransmitter release by disruption of Ca2+ channel/syntaxin interaction (1997) J. Neurosci., 17, pp. 6647-6656
  • Robinson, I.M., Finnegan, J.M., Monck, J.R., Wightman, R.M., Fernandez, J.M., Colocalization of calcium entry and exocytotic release sites in adrenal chromaffin cells (1995) Proc. Natl Acad. Sci. USA, 92, pp. 2474-2478
  • Rosato, S., Uchitel, O.D., Calcium channels coupled to neurotransmitter release at neonatal rat neuromuscular junctions (1999) J. Physiol., 514 (PART 2), pp. 533-540
  • Santana, F., Michelena, P., Jaen, R., Garcia, A.G., Borges, R., Calcium channel subtypes and exocytosis in chromaffin cells: A different view from the intact rat adrenal (1999) Naunyn Schmiedebergs Arch. Pharmacol., 360, pp. 33-37
  • Segura, J., Gil, A., Soria, B., Modeling study of exocytosis in neuroendocrine cells: Influence of the geometrical parameters (2000) Biophys. J., 79, pp. 1771-1786
  • Seward, E.P., Nowycky, M.C., Kinetics of stimulus-coupled secretion in dialyzed bovine chromaffin cells in response to trains of depolarizing pulses (1996) J. Neurosci., 16, pp. 553-562
  • Sorensen, J.B., Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles (2004) Pflugers Arch., 448, pp. 347-362
  • Trifarõ, J.M., Gasman, S., Gutiérrez, L.M., Cytoskeletal control of vesicle transport and exocytosis in chromaffin cells (2008) Acta Physiol. (Oxf), 192, pp. 165-172
  • Voets, T., Dissection of three Ca2+-dependent steps leading to secretion in chromaffin cells from mouse adrenal slices (2000) Neuron, 28, pp. 537-545
  • Voets, T., Neher, E., Moser, T., Mechanisms underlying phasic and sustained secretion in chromaffin cells from mouse adrenal slices (1999) Neuron, 23, pp. 607-615
  • Wan, Q.F., Dong, Y., Yang, H., Lou, X., Ding, J., Xu, T., Protein kinase activation increases insulin secretion by sensitizing the secretory machinery to Ca2+ (2004) J. Gen. Physiol., 124, pp. 653-662
  • Wykes, R.C.E., Bauer, C.S., Khan, S.U., Weiss, J.L., Seward, E.P., Differential regulation of the endogenous N- and P/Q-type Ca2+ channel inactivation by Ca2+/calmodulin impacts on their ability to support exocytosis in chromaffin cells (2007) J. Neurosci., 27, pp. 5236-5248
  • Xu, T., Binz, T., Niemann, H., Neher, E., Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity (1998) Nat. Neurosci., 1, pp. 192-200
  • Xu, J., Tang, K.S., Lu, V.B., Weerasinghe, C.P., Tse, A., Tse, F.W., Maintenance of quantal size and immediately releasable granules in rat chromaffin cells by glucocorticoid (2005) Am. J. Physiol. Cell Physiol., 289, pp. C1122-C1133
  • Yang, Y., Gillis, K.D., A highly Ca2+ -sensitive pool of granules is regulated by glucose and protein kinases in insulin-secreting INS-1 cells (2004) J. Gen. Physiol., 124, pp. 641-651
  • Yang, Y., Udayasankar, S., Dunning, J., Chen, P., Gillis, K.D., A highly Ca2+ -sensitive pool of vesicles is regulated by protein kinase C in adrenal chromaffin cells (2002) Proc. Natl Acad. Sci. USA, 99, pp. 17060-17065
  • Yokoyama, C.T., Myers, S.J., Fu, J., Mockus, S.M., Scheuer, T., Catterall, W.A., Mechanism of SNARE protein binding and regulation of Cav2 channels by phosphorylation of the synaptic protein interaction site (2005) Mol. Cell. Neurosci., 28, pp. 1-17
  • Zamponi, G.W., Regulation of presynaptic calcium channels by synaptic proteins (2003) J. Pharmacol. Sci., 92, pp. 79-83

Citas:

---------- APA ----------
Álvarez, Y.D. & Marengo, F.D. (2011) . The immediately releasable vesicle pool: Highly coupled secretion in chromaffin and other neuroendocrine cells. Journal of Neurochemistry, 116(2), 155-163.
http://dx.doi.org/10.1111/j.1471-4159.2010.07108.x
---------- CHICAGO ----------
Álvarez, Y.D., Marengo, F.D. "The immediately releasable vesicle pool: Highly coupled secretion in chromaffin and other neuroendocrine cells" . Journal of Neurochemistry 116, no. 2 (2011) : 155-163.
http://dx.doi.org/10.1111/j.1471-4159.2010.07108.x
---------- MLA ----------
Álvarez, Y.D., Marengo, F.D. "The immediately releasable vesicle pool: Highly coupled secretion in chromaffin and other neuroendocrine cells" . Journal of Neurochemistry, vol. 116, no. 2, 2011, pp. 155-163.
http://dx.doi.org/10.1111/j.1471-4159.2010.07108.x
---------- VANCOUVER ----------
Álvarez, Y.D., Marengo, F.D. The immediately releasable vesicle pool: Highly coupled secretion in chromaffin and other neuroendocrine cells. J. Neurochem. 2011;116(2):155-163.
http://dx.doi.org/10.1111/j.1471-4159.2010.07108.x