Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The first catalytic enantioselective pinacol rearrangement was reported by Antilla and co-workers in 2010. The reaction was catalyzed by a chiral phosphoric acid and resulted in high levels of enantioselectivity (up to 96% ee). The present study uses density functional theory to investigate the mechanism and origins of stereoselectivity of this important reaction and to explain the difference in selectivity between different catalysts. An OH···O hydrogen bond between the intermediate indolyl alcohol and the phosphate group from the catalyst together with a CH···O hydrogen bond between the indole and the phosphate group were observed in the preferred activation mode for the stereodetermining [1,2]-aryl shift. A stronger CH···O interaction in the major transition state was found to contribute to the high levels of enantioselectivity. A more bulky catalyst (TRIP) was found to impede the formation of the key CH···O interaction, leading to lower levels of enantioselectivity. © 2018 American Chemical Society.

Registro:

Documento: Artículo
Título:Mechanistic Insights into a Chiral Phosphoric Acid-Catalyzed Asymmetric Pinacol Rearrangement
Autor:Falcone, B.N.; Grayson, M.N.; Rodriguez, J.B.
Filiación:Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
Palabras clave:Catalysis; Catalyst selectivity; Cyclization; Density functional theory; Hydrogen bonds; Phosphoric acid; Enantioselective; Phosphate group; Pinacol rearrangements; Transition state; Enantioselectivity; alcohol; indole; phosphate; phosphoric acid; Article; asymmetric catalysis; chirality; conformation; density functional theory; enantioselectivity; hydrogen bond; molecular dynamics; pinacol rearrangement; reaction analysis; stereoselectivity
Año:2018
Volumen:83
Número:23
Página de inicio:14683
Página de fin:14687
DOI: http://dx.doi.org/10.1021/acs.joc.8b02812
Título revista:Journal of Organic Chemistry
Título revista abreviado:J. Org. Chem.
ISSN:00223263
CODEN:JOCEA
CAS:alcohol, 64-17-5; indole, 120-72-9; phosphate, 14066-19-4, 14265-44-2; phosphoric acid, 7664-38-2
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223263_v83_n23_p14683_Falcone

Referencias:

  • Fittig, R., Ueber Einige Derivate des Acetons (1860) Justus Liebigs Ann. Chem., 114, pp. 54-63
  • Kurti, L., Czakó, B., Pinacol and Semipinacol Rearrangement (2005) Strategic Applications of Named Reactions in Organic Chemistry, pp. 350-351. , Academic Press/Elsevier: San Diego
  • Coveney, D.J., Trost, B.M., Fleming, I., The Semipinacol and Other Rearrangements (1991) Comprehensive Organic Synthesis, 3, pp. 777-801. , Pergamon: Oxford, Vol
  • Liang, T., Zhang, Z., Antilla, J.C., Chiral Brønsted Acid Catalyzed Pinacol Rearrangement (2010) Angew. Chem., Int. Ed., 49, pp. 9734-9736
  • Snyder, S.A., Thomas, S.B., Mayer, A.C., Breazzano, S.P., Total Syntheses of Hopeanol and Hopeahainol A Empowered by a Chiral Brønsted Acid Induced Pinacol Rearrangement (2012) Angew. Chem., Int. Ed., 51, pp. 4080-4084
  • Nakamura, K., Osamura, Y., Theoretical Study of the Reaction Mechanism and Migratory Aptitude of the Pinacol Rearrangement (1993) J. Am. Chem. Soc., 115, pp. 9112-9120
  • Simón, L., Goodman, J.M., Mechanism of BINOL - Phosphoric Acid-Catalyzed Strecker Reaction of Benzyl Imines (2009) J. Am. Chem. Soc., 131, pp. 4070-4077
  • Grayson, M.N., Pellegrinet, S.C., Goodman, J.M., Mechanistic Insights into the BINOL-Derived Phosphoric Acid-Catalyzed Asymmetric Allylboration of Aldehydes (2012) J. Am. Chem. Soc., 134, pp. 2716-2722
  • Overvoorde, L.M., Grayson, M.N., Luo, Y., Goodman, J.M., Mechanistic Insights into a BINOL-Derived Phosphoric Acid-Catalyzed Asymmetric Pictet-Spengler Reaction (2015) J. Org. Chem., 80, pp. 2634-2640
  • Rodríguez, E., Grayson, M.N., Asensio, A., Barrio, P., Houk, K.N., Fustero, S., Chiral Brønsted Acid-Catalyzed Asymmetric Allyl(propargyl)boration Reaction of ortho-Alkynyl Benzaldehydes: Synthetic Applications and Factors Governing the Enantioselectivity (2016) ACS Catal., 6, pp. 2506-2514
  • Frisch, M.J., (2013) Gaussian 09, , Gaussian, Inc. Wallingford, CT
  • Zhao, Y., Truhlar, D.G., Density Functionals with Broad Applicability in Chemistry (2008) Acc. Chem. Res., 41, pp. 157-167
  • Simón, L., Goodman, J.M., How Reliable Are DFT Transition Structures? Comparison of GGA, Hybrid-Meta-GGA and Meta-GGA Functionals (2011) Org. Biomol. Chem., 9, pp. 689-700
  • Weigend, F., Ahlrichs, R., Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy (2005) Phys. Chem. Chem. Phys., 7, pp. 3297-3305
  • Marenich, A.V., Cramer, C.J., Truhlar, D.G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions (2009) J. Phys. Chem. B., 113, pp. 6378-6396
  • Grayson, M.N., Goodman, J.M., Understanding the Mechanism of the Asymmetric Propargylation of Aldehydes Promoted by 1,1′-Bi-2-naphthol-Derived Catalysts (2013) J. Am. Chem. Soc., 135, pp. 6142-6148
  • Roe, D.R., Cheatham, T., III, PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Synamics Trajectory Data (2013) J. Chem. Theory Comput., 9, pp. 3084-3095
  • Gasteiger, J., Marsili, M., A New Model for Calculating Atomic Charges in Molecules (1978) Tetrahedron Lett., 19, pp. 3181-3184
  • Wang, J.M., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A., Development and Testing of a General Amber Force Field (2004) J. Comput. Chem., 25, pp. 1157-1174
  • Akiyama, T., Itoh, J., Fuchibe, K., Recent Progress in Chiral Brønsted Acid Catalysis (2006) Adv. Synth. Catal., 348, pp. 999-1010
  • Zamfir, A., Schenker, S., Freund, M., Tsogoeva, S.B., Chiral BINOL-Derived Phosphoric Acids: Privileged Brønsted Acid Organocatalysts for C-C Bond Formation Reactions (2010) Org. Biomol. Chem., 8, pp. 5262-5276
  • Parmar, D., Sugiono, E., Raja, S., Rueping, M., Complete Field Guide to Asymmetric BINOL-Phosphate Derived Brønsted Acid and Metal Catalysis: History and Classification by Mode of Activation; Brønsted Acidity, Hydrogen Bonding, Ion Pairing, and Metal Phosphates (2014) Chem. Rev., 114, pp. 9047-9153
  • Reid, J.P., Goodman, J.M., Selecting Chiral BINOL-Derived Phosphoric Acid Catalysts: General Model to Identify Steric Features Essential for Enantioselectivity (2017) Chem. - Eur. J., 23, pp. 14248-14260

Citas:

---------- APA ----------
Falcone, B.N., Grayson, M.N. & Rodriguez, J.B. (2018) . Mechanistic Insights into a Chiral Phosphoric Acid-Catalyzed Asymmetric Pinacol Rearrangement. Journal of Organic Chemistry, 83(23), 14683-14687.
http://dx.doi.org/10.1021/acs.joc.8b02812
---------- CHICAGO ----------
Falcone, B.N., Grayson, M.N., Rodriguez, J.B. "Mechanistic Insights into a Chiral Phosphoric Acid-Catalyzed Asymmetric Pinacol Rearrangement" . Journal of Organic Chemistry 83, no. 23 (2018) : 14683-14687.
http://dx.doi.org/10.1021/acs.joc.8b02812
---------- MLA ----------
Falcone, B.N., Grayson, M.N., Rodriguez, J.B. "Mechanistic Insights into a Chiral Phosphoric Acid-Catalyzed Asymmetric Pinacol Rearrangement" . Journal of Organic Chemistry, vol. 83, no. 23, 2018, pp. 14683-14687.
http://dx.doi.org/10.1021/acs.joc.8b02812
---------- VANCOUVER ----------
Falcone, B.N., Grayson, M.N., Rodriguez, J.B. Mechanistic Insights into a Chiral Phosphoric Acid-Catalyzed Asymmetric Pinacol Rearrangement. J. Org. Chem. 2018;83(23):14683-14687.
http://dx.doi.org/10.1021/acs.joc.8b02812