Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A camera films a screen to which it is connected. It films its own image, feeding back the image to the screen. The camera can turn around an optical axis. A pattern of p light spots on the screen and q turns (feedback loops) of the camera appears, where p and q follow the hierarchy of a Farey tree. The Farey tree induces a measure distribution μ on the unit segment, different from the hyperbolic one μ H induced by the Farey-Brocot interpolation. In this paper the multifractal spectrum of μ is studied and compared with that of μ H ; the study of the latter spectrum is refined. The spectra are studied in this paper by means of different tools from Number Theory. The results of this study are interpreted in terms of p and q, empirically obtained in the video feedback experiment. © Springer Science+Business Media, LLC 2007.

Registro:

Documento: Artículo
Título:Multifractal spectrum of an experimental (video feedback) Farey Tree
Autor:Piacquadio, M.; Rosen, M.
Filiación:Grupo de Medios Porosos, Departamento de Física, Universidad de Buenos Aires, Paseo Colón 850, (1063), Buenos Aires, Argentina
Palabras clave:Farey-tree; Hausdorff measure; Multifractality; Number theory
Año:2007
Volumen:127
Número:4
Página de inicio:783
Página de fin:804
DOI: http://dx.doi.org/10.1007/s10955-006-9217-5
Título revista:Journal of Statistical Physics
Título revista abreviado:J. Stat. Phys.
ISSN:00224715
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00224715_v127_n4_p783_Piacquadio

Referencias:

  • Essevez Roulet, B., Petitjeans, P., Wesfreid, I.E., Rosen, M., Farey sequences of spatiotemporal patterns in video feedback (2000) Phys. Rev. E, 61 (4), pp. 3743-3749. , www.videofeedback.dk
  • M. M. Dodson, Exceptional sets in dynamical systems and Diophantine approximation. arXiv:math:NT/0108210 V1, Los Alamos National Laboratory, xxx.lanl.gov (2001); Berge, P., Pomeau, Y., Vidal, C., Lordre dans le chaos (1994) Collection Enseignements des Sciences, , Ed. Hermann, Paris
  • Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., Schraiman, B., Fractal measures and their singularities: The characterization of strange sets (1986) Nucl. Phys. B (Proc. Suppl.), 2, pp. 513-516
  • Duong-Van, M., Phase transition of multifractals (1987) Nucl. Phys. B (Proc. Suppl.), 2, pp. 521-526
  • Cawley, R., Mauldin, R.D., Multifractal decompositions of Moran fractals (1992) Adv. Math, 92 (2), pp. 196-236
  • Riedi, R., Mandelbrot, B., The inversion formula for continuous multifractals (1997) Adv. Appl. Math, 19, pp. 332-354
  • Riedi, R., Mandelbrot, B., Exception to the multifractal formalism for discontinuous measures (1998) Math. Proc. Camb. Phil. Soc, 123, pp. 133-157
  • Piacquadio, M., Cesaratto, E., Multifractal spectrum and thermodynamical formalism of the Farey tree (2001) Int. J. Bifurcation and Chaos, 11 (5), pp. 1331-1358
  • Hardy, G.H., Wright, E.M., (1938) An Introduction to the Theory of Numbers, pp. I-IV. , Chap, Clarendon Press, Oxford
  • Grynberg, S., Piacquadio, M., Hyperbolic geometry and multifractal spectra. Part. II (1995) Trabajos de Matemáticas 252, Publicaciones Previas del Instituto Argentino de Matemáticas, I.A.M.-CONICET
  • Cvitanovic, P., Jensen, H., Kadanoff, L.P., Procaccia, I., Renormalization, unstable manifolds, and the fractal structure of mode locking (1985) Phys. Rev. Lett, 55 (4), pp. 343-346
  • C. Series, Non Euclidean geometry, continued fractions and ergodic theory. Math. Intell. 4(1): 24-28 (1982); Piacquadio Losada, M., Grynberg, S., Cantor staircases in physics and Diophantine approximation (1998) Int. J. Bifurcation and Chaos, 8 (6), pp. 1095-1106
  • Grynberg, S., Piacquadio, M., (2003) Self-similarity of Farey staircases, pp. V1. , xxx.lanl.gov, arXiv:math-ph/0306024, Los Alamos National Laboratory
  • Jarník, V., Zur metrischen Theorie der Diophantischen Approximationen (1928) Prace Mat-Fiz, 91-106
  • C. Series, The Markov spectrum in the Hecke group G5. Proc. London Math. Soc. 57: 151-180 (1988); A. Haas and C. Series, The Hurwitz constant and Diophantine approximation on Hecke groups. J. London Math. Soc. 34: 219-234 (1986); C. Series, The modular surface and continued fractions. J. London Math. Soc. (2) 31(1): 69-80 (1985); Piacquadio, M., The geometry of Farey staircases (2004) Int. J. Bifurcation and Chaos, 14 (12), pp. 4075-4096
  • Cesaratto, E., Piacquadio, M., Multifractal formalism of the Farey partition (1998) Revista de la Unión Matemática Argentina, 41 (2), pp. 51-66
  • Good, L.J., The fractional dimensional theory of continued fractions (1941) Proc. Cam. Phil. Soc, 37, pp. 199-228
  • Hardy, G.H., Wright, E.M., (1938) An Introduction to the Theory of Numbers, , Chap. XVIII, Clarendon Press, Oxford

Citas:

---------- APA ----------
Piacquadio, M. & Rosen, M. (2007) . Multifractal spectrum of an experimental (video feedback) Farey Tree. Journal of Statistical Physics, 127(4), 783-804.
http://dx.doi.org/10.1007/s10955-006-9217-5
---------- CHICAGO ----------
Piacquadio, M., Rosen, M. "Multifractal spectrum of an experimental (video feedback) Farey Tree" . Journal of Statistical Physics 127, no. 4 (2007) : 783-804.
http://dx.doi.org/10.1007/s10955-006-9217-5
---------- MLA ----------
Piacquadio, M., Rosen, M. "Multifractal spectrum of an experimental (video feedback) Farey Tree" . Journal of Statistical Physics, vol. 127, no. 4, 2007, pp. 783-804.
http://dx.doi.org/10.1007/s10955-006-9217-5
---------- VANCOUVER ----------
Piacquadio, M., Rosen, M. Multifractal spectrum of an experimental (video feedback) Farey Tree. J. Stat. Phys. 2007;127(4):783-804.
http://dx.doi.org/10.1007/s10955-006-9217-5