Artículo

Bostan, A.; D'Andrea, C.; Krick, T.; Szanto, A.; Valdettaro, M. "Subresultants in multiple roots: An extremal case" (2017) Linear Algebra and Its Applications. 529:185-198
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We provide explicit formulae for the coefficients of the order-d polynomial subresultant of (x−α)m and (x−β)n with respect to the set of Bernstein polynomials {(x−α)j(x−β)d−j,0≤j≤d}. They are given by hypergeometric expressions arising from determinants of binomial Hankel matrices. © 2017 Elsevier Inc.

Registro:

Documento: Artículo
Título:Subresultants in multiple roots: An extremal case
Autor:Bostan, A.; D'Andrea, C.; Krick, T.; Szanto, A.; Valdettaro, M.
Filiación:Inria, Université Paris-Saclay, 1 rue Honoré d'Estienne d'Orves, Palaiseau, 91120, France
Departament de Matemàtiques i Informàtica, Universitat de Barcelona (UB), Gran Via de les Corts Catalanes, 585, Barcelona, 08007, Spain
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, IMAS, CONICET, Universidad de Buenos Aires, Argentina
Department of Mathematics, North Carolina State University, Raleigh, NC 27695, United States
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Palabras clave:Hankel matrices; Ostrowski's determinant; Pfaff–Saalschütz identity; Subresultants; Linear algebra; Mathematical techniques; Bernstein polynomial; Explicit formula; Extremal; Hankel matrix; Hypergeometric; Multiple roots; Ostrowski; Subresultants; Matrix algebra
Año:2017
Volumen:529
Página de inicio:185
Página de fin:198
DOI: http://dx.doi.org/10.1016/j.laa.2017.04.019
Título revista:Linear Algebra and Its Applications
Título revista abreviado:Linear Algebra Its Appl
ISSN:00243795
CODEN:LAAPA
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_00243795_v529_n_p185_Bostan

Referencias:

  • Andrews, G.E., Pfaff's method. II. Diverse applications (2009) J. Comput. Appl. Math., 68 (1-2), pp. 15-23
  • Andrews, G.E., Pfaff's method. III. Comparison with the WZ method (1996) Electron. J. Combin., 3 (2). , http://www.combinatorics.org/ojs/index.php/eljc/article/view/v3i2r21, 18 pp
  • Apéry, F., Jouanolou, J.-P., Résultant et sous-résultant: le cas d'une variable avec exercices corrigés (2006), http://www.editions-hermann.fr/4149-elimination-le-cas-d-une-variable.html, Hermann Paris; Beckermann, B., Labahn, G., Fraction-free computation of matrix rational interpolants and matrix GCDs (2000) SIAM J. Matrix Anal. Appl., 22 (1), pp. 114-144
  • D'Andrea, C., Hong, H., Krick, T., Szanto, A., An elementary proof of Sylvester's double sums for subresultants (2007) J. Symbolic Comput., 42 (3), pp. 290-297
  • D'Andrea, C., Hong, H., Krick, T., Szanto, A., Sylvester's double sums: the general case (2009) J. Symbolic Comput., 44 (9), pp. 1164-1175
  • D'Andrea, C., Krick, T., Szanto, A., Subresultants in multiple roots (2013) Linear Algebra Appl., 438 (5), pp. 1969-1989
  • D'Andrea, C., Krick, T., Szanto, A., Subresultants, Sylvester sums and the rational interpolation problem (2015) J. Symbolic Comput., 68 (1), pp. 72-83
  • von zur Gathen, J., Lücking, T., Subresultants revisited (2003) Theoret. Comput. Sci., 297 (1-3), pp. 199-239
  • Hong, H., Subresultants in Roots (1999), Technical report Department of Mathematics, North Carolina State University; Jacobi, C.G.J., De eliminatione variabilis e duabus aequationibus algebraicis (1836) J. Reine Angew. Math., 15, pp. 101-124
  • Krick, T., Szanto, A., Valdettaro, M., Symmetric interpolation, exchange lemma and Sylvester sums (2017) Comm. Algebra, 45 (8), pp. 3231-3250
  • Lascoux, A., Pragacz, P., Double Sylvester sums for subresultants and multi-Schur functions (2003) J. Symbolic Comput., 35 (6), pp. 689-710
  • Ma, K., von zur Gathen, J., Analysis of Euclidean algorithms for polynomials over finite fields (1990) J. Symbolic Comput., 9 (4), pp. 429-455
  • Mishra, B., Algorithmic Algebra (1993) Texts and Monographs in Computer Science, , Springer-Verlag New York xii+416 pp
  • Ostrowski, A.M., On some determinants with combinatorial numbers (1964) J. Reine Angew. Math., 216, pp. 25-30
  • Pfaff, J.F., Observationes analyticae ad L. Euleri Institutiones Calculi Integralis, Vol. IV, Supplem. II et IV (1797) Histoire de l'Académie Impériale des Sciences, 1793, Nova Acta Academiae Scientiarum Imperialis Petropolitanae XI, pp. 37-57. , (Note that the history section is paged separately from the scientific section of this journal.)
  • Poisson, S.-D., Mémoire sur l'élimination dans les équations algébriques (1802) J. Éc. Polytech., 4 (11e cahier), pp. 199-203. , http://gallica.bnf.fr/ark:/12148/bpt6k4336689/f209
  • Roy, M.-F., Szpirglas, A., Sylvester double sums and subresultants (2011) J. Symbolic Comput., 46 (4), pp. 385-395
  • Saalschütz, L., Eine Summationsformel (1890) Z. Angew. Math. Phys., 35, pp. 186-188
  • Slater, L.J., Generalized Hypergeometric Functions (1966), http://www.cambridge.org/9780521090612, Cambridge University Press; Sylvester, J.J., On rational derivation from equations of coexistence, that is to say, a new and extended theory of elimination (1839) Collected Mathematical Papers of James Joseph Sylvester, Vol. 1, Philos. Mag., 15, pp. 428-435. , Also appears in the Chelsea Publishing Co
  • Sylvester, J.J., A method of determining by mere inspection the derivatives from two equations of any degree (1840) Collected Mathematical Papers of James Joseph Sylvester, Vol. 1, Philos. Mag., 16, pp. 132-135. , Also appears in the Chelsea Publishing Co
  • Sylvester, J.J., Note on elimination (1840) Collected Mathematical Papers of James Joseph Sylvester, Vol. 1, Philos. Mag., 17 (11), pp. 379-380. , Also appears in the Chelsea Publishing Co
  • Sylvester, J.J., On a theory of the syzygetic relations of two rational integral functions, comprising an application to the theory of Sturm's functions and that of the greatest algebraical common measure (1853) Collected Mathematical Papers of James Joseph Sylvester, Vol. 1, Philos. Trans. R. Soc. Lond., Part III, pp. 407-548. , Also appears in the Chelsea Publishing Co

Citas:

---------- APA ----------
Bostan, A., D'Andrea, C., Krick, T., Szanto, A. & Valdettaro, M. (2017) . Subresultants in multiple roots: An extremal case. Linear Algebra and Its Applications, 529, 185-198.
http://dx.doi.org/10.1016/j.laa.2017.04.019
---------- CHICAGO ----------
Bostan, A., D'Andrea, C., Krick, T., Szanto, A., Valdettaro, M. "Subresultants in multiple roots: An extremal case" . Linear Algebra and Its Applications 529 (2017) : 185-198.
http://dx.doi.org/10.1016/j.laa.2017.04.019
---------- MLA ----------
Bostan, A., D'Andrea, C., Krick, T., Szanto, A., Valdettaro, M. "Subresultants in multiple roots: An extremal case" . Linear Algebra and Its Applications, vol. 529, 2017, pp. 185-198.
http://dx.doi.org/10.1016/j.laa.2017.04.019
---------- VANCOUVER ----------
Bostan, A., D'Andrea, C., Krick, T., Szanto, A., Valdettaro, M. Subresultants in multiple roots: An extremal case. Linear Algebra Its Appl. 2017;529:185-198.
http://dx.doi.org/10.1016/j.laa.2017.04.019