Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Background and aims: We studied, through exudates employment, the effect of Epichloë (endophytic fungi), both independently and in association with Bromus auleticus (grass), on arbuscular mycorrhizal fungi (AMF) colonization, host and neighbouring plants biomass production and soil changes. Methods: Through in vitro and greenhouse experiments, Epichloë endophytes effect on AMF development was evaluated. In vitro studies of exudates effect on Gigaspora rosea and Rhizophagus intraradices were performed using root or endophyte exudates. A 6-month greenhouse experiment was conducted to determine Bromus auleticus endophytic status effect and endophyte exudates role in biomass production, neighbouring plants mycorrhizal colonization and soil properties. Results: Endophyte exudates and E+ plant root exudates promoted in vitro AMF development in the pre-infective stage of G. rosea and in carrot root culture mycelium of R. intraradices in a dose-response relationship, while control media and E- plants exudates had no effect. R. intraradices colonization and plant growth was clearly increased by endophytes and their exudates. Conclusions: This is the first work evidencing the direct effect of Epichloë endophytes and infected plants root exudates on AMF extramatrical development. While higher levels of AMF colonization were observed in E+ plants, no clear effect was detected in neighbouring plants colonization, plant biomass or soil properties. © 2017, Springer International Publishing Switzerland.

Registro:

Documento: Artículo
Título:Epichloë exudates promote in vitro and in vivo arbuscular mycorrhizal fungi development and plant growth
Autor:Vignale, M.V.; Iannone, L.J.; Scervino, J.M.; Novas, M.V.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental/Laboratorio de Micología y Fitopatología No. 69, Buenos Aires, Argentina
CONICET - Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Ingeniería Química, Buenos Aires, Argentina
CONICET - Universidad Nacional de Comahue, Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBIOMA), Bariloche, Rio Negro, Argentina
Palabras clave:Bromus auleticus; Epichloë tembladerae; Seed-soil microbe interactions; Symbiosis; arbuscular mycorrhiza; biological development; biomass allocation; colonization; dose-response relationship; endophyte; experiment; exudation; fungus; grass; growth; host; seed; soil microorganism; soil property; symbiosis; Bromus; Daucus carota; Fungi; Gigaspora rosea; Rhizophagus
Año:2018
Volumen:422
Número:1-2
Página de inicio:267
Página de fin:281
DOI: http://dx.doi.org/10.1007/s11104-017-3173-5
Título revista:Plant and Soil
Título revista abreviado:Plant Soil
ISSN:0032079X
CODEN:PLSOA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0032079X_v422_n1-2_p267_Vignale

Referencias:

  • Afkhami, M.E., Stinchcombe, J.R., Multiple mutualist effects on genome-wide expression in the tripartite association between Medicago truncatula, nitrogen-fixing bacteria, and mycorrhizal fungi (2016) Mol Ecol, , PID: 27543961
  • Antunes, P.M., Miller, J., Carvalho, L.M., Klironomos, J.N., Newman, J.A., Even after death the endophytic fungus of Schedonorus phoenix reduces the arbuscular mycorrhizas of other plants (2008) Funct Ecol, 22, pp. 912-918
  • Arrieta, A., Iannone, L.J., Scervino, J., Vignale, M., Novas, M., A foliar endophyte increases the diversity of phosphorus-solubilizing rhizospheric fungi and mycorrhizal colonization in the wild grass Bromus auleticus (2015) Fungal Ecol, 17, pp. 146-154
  • Bago, B., Putative sites for nutrient uptake in arbuscular mycorrhizal fungi (2000) Plant Soil, 226, pp. 263-274. , COI: 1:CAS:528:DC%2BD3MXotVGnsA%3D%3D
  • Bago, B., Cano, C., Breaking myths on arbuscular mycorrhizas in vitro biology (2005) In vitro culture of mycorrhizas. Springer, pp. 111-138
  • Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., Vivanco, J.M., The role of root exudates in rhizosphere interactions with plants and other organisms (2006) Annu Rev Plant Biol, 57, pp. 233-266. , COI: 1:CAS:528:DC%2BD28XosVKhtr8%3D, PID: 16669762
  • Bécard, G., Fortin, J., Early events of vesicular–arbuscular mycorrhiza formation on Ri T-DNA transformed roots (1988) New Phytol, 108, pp. 211-218
  • Berendsen, R.L., Pieterse, C.M., Bakker, P.A., The rhizosphere microbiome and plant health (2012) Trends Plant Sci, 17, pp. 478-486. , COI: 1:CAS:528:DC%2BC38Xms12rs70%3D, PID: 22564542
  • Broeckling, C.D., Broz, A.K., Bergelson, J., Manter, D.K., Vivanco, J.M., Root exudates regulate soil fungal community composition and diversity (2008) Appl Environ Microbiol, 74, pp. 738-744. , COI: 1:CAS:528:DC%2BD1cXhvVSqu7k%3D, PID: 18083870
  • Chabot, S., Bécard, G., Piché, Y., Life cycle of Glomus intraradix in root organ culture (1992) Mycologia, 84, pp. 315-321
  • Chaparro, J.M., Sheflin, A.M., Manter, D.K., Vivanco, J.M., Manipulating the soil microbiome to increase soil health and plant fertility (2012) Biol Fertil Soils, 48, pp. 489-499
  • Cheplick, G.P., Faeth, S., (2009) Ecology and evolution of the grass-endophyte symbiosis, , Oxford university press, Oxford
  • Chu-Chou, M., Guo, B., An, Z.Q., Hendrix, J., Ferriss, R., Siegel, M., Dougherty, C., Burrus, P., Suppression of mycorrhizal fungi in fescue by the Acremonium coenophialum endophyte (1992) Soil Biol Biochem, 24, pp. 633-637
  • Clark, E., White, J., Patterson, R., Improved histochemical techniques for the detection of Acremonium coenophialum in tall fescue and methods of in vitro culture of the fungus (1983) J Microbiol Methods, 1, pp. 149-155
  • Clay, K., Fungal endophytes of grasses: a defensive mutualism between plants and fungi (1988) Ecology, 69, pp. 10-16
  • Colpas, F.T., Ono, E.O., Rodrigues, J.D., Passos, J.R.D.S., Effects of some phenolic compounds on soybean seed germination and on seed-borne fungi (2003) Braz Arch Biol Technol, 46, pp. 155-161. , COI: 1:CAS:528:DC%2BD3sXlslCrtb4%3D
  • Dai, J., Hu, J., Lin, X., Yang, A., Wang, R., Zhang, J., Wong, M.H., Arbuscular mycorrhizal fungal diversity, external mycelium length, and glomalin-related soil protein content in response to long-term fertilizer management (2013) J Soils Sediments, 13, pp. 1-11. , COI: 1:CAS:528:DC%2BC3sXkvV2jug%3D%3D
  • Di Rienzo, J., Casanoves, F., Balzarini, M., Gonzalez, L., Tablada, M., Robledo, C., (2011) InfoStat versión 2011, , Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina
  • Eaton, C.J., Cox, M.P., Scott, B., What triggers grass endophytes to switch from mutualism to pathogenism? (2011) Plant Sci, 180, pp. 190-195. , COI: 1:CAS:528:DC%2BC3cXhs1agtLzK, PID: 21421360
  • Fokom, R., Adamou, S., Teugwa, M., Boyogueno, A.B., Nana, W., Ngonkeu, M., Tchameni, N., Zollo, P.A., Glomalin related soil protein, carbon, nitrogen and soil aggregate stability as affected by land use variation in the humid forest zone of South Cameroon (2012) Soil Till Res, 120, pp. 69-75
  • Fracchia, S., Sampedro, I., Scervino, J., Garcia-Romera, I., Ocampo, J., Godeas, A., Influence of saprobe fungi and their exudates on arbuscular mycorrhizal symbioses (2004) Symbiosis, 36, pp. 169-182
  • Franzluebbers, A.J., Hill, N.S., Soil carbon, nitrogen, and ergot alkaloids with short- and long-term exposure to endophyte-infected and endophyte-free tall fescue (2005) Soil Sci Soc Am J, 69, pp. 404-412. , COI: 1:CAS:528:DC%2BD2MXivFCku78%3D
  • Galvagno, M.A., (1976) Ensayos de nutricion en Ascobolus crenulatus P. Karst. (Fungi: Ascomycetes). Boletin de la Sociedad Argentina de Botanica 17
  • Guo, B., Hendrix, J., An, Z.Q., Ferriss, R., Role of Acremonium endophyte of fescue on inhibition of colonization and reproduction of mycorrhizal fungi (1992) Mycologia, 84, pp. 882-885
  • Guo, J., McCulley, R.L., McNear, D.H., Jr., Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition (2015) Front Plant Sci, 6, pp. 1-13
  • Guo, J., McCulley, R., Phillips, T., McNear, D., Fungal endophyte and tall fescue cultivar interact to differentially effect bulk and rhizosphere soil processes governing C and N cycling (2016) Soil Biol Biochem, 101, pp. 165-174. , COI: 1:CAS:528:DC%2BC28Xht1eis73P
  • Gustafson, D.J., Casper, B.B., Differential host plant performance as a function of soil arbuscular mycorrhizal fungal communities: experimentally manipulating co-occurring Glomus species (2006) Plant Ecol, 183, pp. 257-263
  • Hamilton, C.E., Gundel, P.E., Helander, M., Saikkonen, K., Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review (2012) Fungal Divers, 54, pp. 1-10
  • Handayani, I.P., Coyne, M.S., Phillips, T.D., Soil organic carbon fractions differ in two contrasting tall fescue systems (2011) Plant Soil, 338, pp. 43-50. , COI: 1:CAS:528:DC%2BC3cXhsFKmtL7L
  • Iannone, L.J., Cabral, D., Effects of the Neotyphodium endophyte status on plant performance of Bromus auleticus, a wild native grass from South America (2006) Symbiosis, 41, pp. 61-69
  • Iannone, L.J., Cabral, D., Schardl, C.L., Rossi, M.S., Phylogenetic divergence, morphological and physiological differences distinguish a new Neotyphodium endophyte species in the grass Bromus auleticus from South America (2009) Mycologia, 101, pp. 340-351. , COI: 1:CAS:528:DC%2BD1MXnvVWltrg%3D, PID: 19537207
  • Iannone, L.J., Pinget, A.D., Nagabhyru, P., Schardl, C.L., De Battista, J.P., Beneficial effects of Neotyphodium tembladerae and Neotyphodium pampeanum on a wild forage grass (2012) Grass Forage Sci, 67, pp. 382-390
  • Iqbal, J., Siegrist, J.A., Nelson, J.A., McCulley, R.L., Fungal endophyte infection increases carbon sequestration potential of southeastern USA tall fescue stands (2012) Soil Biol Biochem, 44, pp. 81-92. , COI: 1:CAS:528:DC%2BC3MXhsFSju7zL
  • Jones, D.L., Hodge, A., Kuzyakov, Y., Plant and mycorrhizal regulation of rhizodeposition (2004) New Phytol, 163, pp. 459-480. , COI: 1:CAS:528:DC%2BD2cXnvVGju74%3D
  • Larimer, A.L., Bever, J.D., Clay, K., Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass (2012) Oikos, 121, pp. 2090-2096
  • Leuchtmann, A., Bacon, C.W., Schardl, C.L., White, J.F., Tadych, M., Nomenclatural realignment of Neotyphodium species with genus Epichloë (2014) Mycologia, 106, pp. 202-215. , COI: 1:CAS:528:DC%2BC2cXpvFShsrk%3D, PID: 24459125
  • Liu, Q., Parsons, A.J., Xue, H., Fraser, K., Ryan, G.D., Newman, J.A., Rasmussen, S., Competition between foliar Neotyphodium lolii endophytes and mycorrhizal Glomus Spp. Fungi in Lolium perenne depends on resource supply and host carbohydrate content (2011) Funct Ecol, 25, pp. 910-920
  • Mack, K.M.L., Rudgers, J.A., Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes (2008) Oikos, 117, pp. 310-320
  • Malinowski, D.P., Belesky, D.P., Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance (2000) Crop Sci, 40, pp. 923-940. , COI: 1:CAS:528:DC%2BD3cXns1Gqsb8%3D
  • Marsh, B., Measurement of length in random arrangements of lines (1971) J Appl Ecol, pp. 265-267
  • McGonigle, T., Miller, M., Evans, D., Fairchild, G., Swan, J., A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi (1990) New Phytol, 115, pp. 495-501
  • Mosse, B., The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions (1962) J Gen Microbiol, 27, pp. 509-520. , COI: 1:STN:280:DyaF38%2FnvVSnsA%3D%3D, PID: 14476553
  • Müller, J., Artificial infection by endophytes affects growth and mycorrhizal colonisation of Lolium perenne (2003) Funct Plant Biol, 30, pp. 419-424
  • Novas, M.V., Gentile, A., Cabral, D., Comparative study of growth parameters on diaspores and seedlings between populations of Bromus setifolius from Patagonia, differing in Neotyphodium endophyte infection (2003) Flora, 198, pp. 421-426
  • Novas, M.V., Cabral, D., Godeas, A.M., Interaction between grass endophytes and mycorrhizas in Bromus setifolius from Patagonia, Argentina (2005) Symbiosis, 40, pp. 23-30
  • Novas, M.V., Iannone, L.J., Godeas, A.M., Cabral, D., Positive association between mycorrhiza and foliar endophytes in Poa bonariensis, a native grass (2009) Mycol Prog, 8, pp. 75-81
  • Novas, M.V., Iannone, L.J., Godeas, A.M., Scervino, J.M., Evidence for leaf endophyte regulation of root symbionts: effect of Neotyphodium endophytes on the pre-infective state of mycorrhizal fungi (2011) Symbiosis, 55, pp. 19-28
  • Omacini, M., Eggers, T., Bonkowski, M., Gange, A.C., Jones, T.H., Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants (2006) Funct Ecol, 20, pp. 226-232
  • Palmer, T.M., Doak, D.F., Stanton, M.L., Bronstein, J.L., Kiers, E.T., Young, T.P., Goheen, J.R., Pringle, R.M., Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism (2010) P Natl Acad Sci, 107, pp. 17234-17239. , COI: 1:CAS:528:DC%2BC3cXhtlSjurvP
  • Panaccione, D.G., Beaulieu, W.T., Cook, D., Bioactive alkaloids in vertically transmitted fungal endophytes (2014) Funct Ecol, 28, pp. 299-314
  • Phillips, J.M., Hayman, D.S., Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection (1970) T Brit Mycol Soc, 55, pp. 158-161
  • Ponce, M.A., Scervino, J.M., Erra-Balsells, R., Ocampo, J.A., Godeas, A.M., Flavonoids from shoots and roots of Trifolium repens (white clover) grown in presence or absence of the arbuscular mycorrhizal fungus Glomus intraradices (2004) Phytochem, 65, pp. 1925-1930. , COI: 1:CAS:528:DC%2BD2cXmtVCjt7o%3D
  • Ponce, M.A., Bompadre, M.J., Scervino, J.M., Ocampo, J.A., Chaneton, E.J., Godeas, A.M., Flavonoids, benzoic acids and cinnamic acids isolated from shoots and roots of Italian rye grass (Lolium multiflorum lam.) with and without endophyte association and arbuscular mycorrhizal fungus (2009) Biochem Syst Ecol, 37, pp. 245-253. , COI: 1:CAS:528:DC%2BD1MXhtFagtLbL
  • Rasmussen, S., Parsons, A.J., Jones, C.S., Metabolomics of forage plants: a review (2012) Ann Bot, 110, pp. 1281-1290. , COI: 1:CAS:528:DC%2BC38Xhs1Sru77N, PID: 22351485
  • Rillig, M.C., Aguilar-Trigueros, C.A., Bergmann, J., Verbruggen, E., Veresoglou, S.D., Lehmann, A., Plant root and mycorrhizal fungal traits for understanding soil aggregation (2015) New Phytol, 205, pp. 1385-1388. , COI: 1:CAS:528:DC%2BC2MXhvFehtb0%3D, PID: 25231111
  • Saikkonen, K., Wäli, P.R., Helander, M., Genetic compatibility determines endophyte-grass combinations (2010) PLoS One, 5. , PID: 20614034
  • Saikkonen, K., Saari, S., Helander, M., Defensive mutualism between plants and endophytic fungi? (2010) Fungal Divers, 41, pp. 101-113
  • Saikkonen, K., Gundel, P.E., Helander, M., Chemical ecology mediated by fungal endophytes in grasses (2013) J Chem Ecol, 39, pp. 962-968. , COI: 1:CAS:528:DC%2BC3sXht1Crt7zL, PID: 23797930
  • Scervino, J.M., Sampedro, I., Ponce, M.A., Rodriguez, M.A., Ocampo, J.A., Godeas, A., Rhodotorulic acid enhances root colonization of tomato plants by arbuscular mycorrhizal (AM) fungi due to its stimulatory effect on the pre-symbiotic stages of the AM fungi (2008) Soil Biol Biochem, 40, pp. 2474-2476. , COI: 1:CAS:528:DC%2BD1cXhtVSjtLrM
  • Schardl, C.L., Leuchtmann, A., Spiering, M.J., Symbioses of grasses with seedborne fungal endophytes (2004) Annu Rev Plant Biol, 55, pp. 315-340. , COI: 1:CAS:528:DC%2BD2cXlvFeisL8%3D, PID: 15377223
  • Schardl, C.L., Young, C.A., Faulkner, J.R., Florea, S., Pan, J., Chemotypic diversity of epichloae, fungal symbionts of grasses (2012) Fungal Ecol, 5, pp. 331-344
  • Siegel, M.R., Bush, L.P., Defensive chemicals in grass-fungal endophyte associations (1996) Phytochemical diversity and redundancy in ecological interactions, pp. 81-119. , In: Springer
  • Smith, S.E., Read, D.J., (2008) Mycorrhizal symbiosis, , Academic Press
  • Smith, S.E., Jakobsen, I., Grønlund, M., Smith, F.A., Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition (2011) Plant Physiol, 156, pp. 1050-1057. , COI: 1:CAS:528:DC%2BC3MXptFWlurc%3D, PID: 21467213
  • Song, M., Li, X., Saikkonen, K., Li, C., Nan, Z., An asexual Epichloë endophyte enhances waterlogging tolerance of Hordeum brevisubulatum (2015) Fungal Ecol, 13, pp. 44-52
  • St-Arnaud, M., Hamel, C., Vimard, B., Caron, M., Fortin, J., Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots (1996) Mycol Res, 100, pp. 328-332
  • Vale, M., Nguyen, C., Dambrine, E., Dupouey, J., Microbial activity in the rhizosphere soil of six herbaceous species cultivated in a greenhouse is correlated with shoot biomass and root C concentrations (2005) Soil Biol Biochem, 37, pp. 2329-2333. , COI: 1:CAS:528:DC%2BD2MXhtlShs77F
  • Vignale, M.V., Astiz-Gassó, M.M., Novas, M.V., Iannone, L.J., Epichloid endophytes confer resistance to the smut Ustilago bullata in the wild grass Bromus auleticus (Trin.) (2013) Biol Control, 67, pp. 1-7
  • Vignale, M.V., Iannone, L.J., Pinget, A.D., De Battista, J.P., Novas, M.V., Effect of epichloid endophytes and soil fertilization on arbuscular mycorrhizal colonization of a wild grass (2016) Plant Soil, 405, pp. 279-287. , COI: 1:CAS:528:DC%2BC2MXptVSmurc%3D
  • Wilson, G.W., Rice, C.W., Rillig, M.C., Springer, A., Hartnett, D.C., Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments (2009) Ecol Lett, 12, pp. 452-461. , PID: 19320689
  • Yang, H., Xu, J., Guo, Y., Koide, R.T., Dai, Y., Xu, M., Bian, L., Zhang, Q., Predicting plant response to arbuscular mycorrhizas: the role of host functional traits (2016) Fungal Ecol, 20, pp. 79-83
  • Zhou, Y., Li, X., Qin, J., Liu, H., Chen, W., Niu, Y., Ren, A., Gao, Y., Effects of simultaneous infections of endophytic fungi and arbuscular mycorrhizal fungi on the growth of their shared host grass Achnatherum sibiricum under varying N and P supply (2016) Fungal Ecol, 20, pp. 56-65

Citas:

---------- APA ----------
Vignale, M.V., Iannone, L.J., Scervino, J.M. & Novas, M.V. (2018) . Epichloë exudates promote in vitro and in vivo arbuscular mycorrhizal fungi development and plant growth. Plant and Soil, 422(1-2), 267-281.
http://dx.doi.org/10.1007/s11104-017-3173-5
---------- CHICAGO ----------
Vignale, M.V., Iannone, L.J., Scervino, J.M., Novas, M.V. "Epichloë exudates promote in vitro and in vivo arbuscular mycorrhizal fungi development and plant growth" . Plant and Soil 422, no. 1-2 (2018) : 267-281.
http://dx.doi.org/10.1007/s11104-017-3173-5
---------- MLA ----------
Vignale, M.V., Iannone, L.J., Scervino, J.M., Novas, M.V. "Epichloë exudates promote in vitro and in vivo arbuscular mycorrhizal fungi development and plant growth" . Plant and Soil, vol. 422, no. 1-2, 2018, pp. 267-281.
http://dx.doi.org/10.1007/s11104-017-3173-5
---------- VANCOUVER ----------
Vignale, M.V., Iannone, L.J., Scervino, J.M., Novas, M.V. Epichloë exudates promote in vitro and in vivo arbuscular mycorrhizal fungi development and plant growth. Plant Soil. 2018;422(1-2):267-281.
http://dx.doi.org/10.1007/s11104-017-3173-5