Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

An Mw 8.2 earthquake affected on September 8, 2017 the Cocos plate beneath the Caribbean plate next to the transform contact with the North American plate across the Tehuantepec gap, one of the two gaps that exist along the Mexican subduction zone offshore Chiapas. The epicenter occurred at a depth of 47 km and was associated with a highly steep normal fault parallel to the trench. The origin can be related to slab pull forces, dehydration processes and reactivation of outer rise faults. This earthquake produced positive changes in the Coulomb static stress, which would favor the development of thrust displacements along the interplate contact across the Tehuantepec gap instead of liberating tensions accumulated on it for decades. In the case that stresses were not released steadily in the future, a thrusting-related event with a magnitude of Mw 7.9 or higher could be expected after the September 8, 2017 Chiapas earthquake. However, the differential weight of the forearc offshore (that contains a region with a high positive gravity gradient) could inhibit rupture propagation to the coast precluding higher magnitudes. Combined and satellite only earth gravity field models show a highly heterogeneous density structure along the forearc of the North America-Caribbean plates and in particular at the studied zone. Maximum displacements in the rupture zone correlate to minimum gravity-derived anomalies showing a probable relationship between the differential weight of the forearc structure and the extensional faulting affecting the bending of the Cocos plate at depth. In this sense, variable sediment thicknesses over the forearc, and a high gravity gradient zone parallel to the trench in the outer forearc, could be reflecting physical heterogeneities that influence the propagation of the rupture zone. Additionally, to the north, a highly positive gradient signal related to the subducted Tehuantepec Fz projection beneath the North American plate marks the ending of the main slip patch acting as a barrier to the seismic rupture propagation. This event exemplifies (1) how extensional ruptures in the downgoing slab of a subduction zone can increment accumulated elastic strain across a seismic gap instead of liberating tensions, (2) that rupture propagation for this intraplate event was probably controlled (at shallow depths) by the density structure of the forearc, similarly to recent interplate earthquakes along the Chilean margin; (3) how a low gravity gradient signal and low density structures identified from the inversion model in the region of the outer forearc, where the normal stress increased after the main seismic event, suggest a higher risk of occurrence of a great megathrust earthquake. © 2018, Springer Nature Switzerland AG.

Registro:

Documento: Artículo
Título:Static Stress Increase in the Outer Forearc Produced by MW 8.2 September 8, 2017 Mexico Earthquake and its Relation to the Gravity Signal
Autor:Spagnotto, S.; Alvarez, O.; Folguera, A.
Filiación:CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
FCFMyN, Universidad Nacional de San Luis, San Luis, Argentina
IGSV, Instituto Geofisico Sismologico Ing. F.S. Volponi, Universidad Nacional de San Juan, San Juan, Argentina
IDEAN, Instituto de Estudios Andinos “Don Pablo Groeber, Universidad de Buenos Aires, Conicet-UBA, Buenos Aires, Argentina
Palabras clave:Chiapas earthquake; Coulomb static stress; extensional faults; satellite gravimetry; Dehydration; Faulting; Liquid sloshing; Plates (structural components); Earth gravity field models; Extensional faults; Interplate earthquakes; Megathrust earthquakes; Mexican subduction zone; Satellite gravimetries; Seismic rupture propagation; Static stress; Earthquakes; Coulomb criterion; earthquake event; earthquake magnitude; extensional tectonics; fault; gravimetry; satellite altimetry; static response; Chiapas; Mexico [North America]
Año:2018
Volumen:175
Número:8
Página de inicio:2575
Página de fin:2593
DOI: http://dx.doi.org/10.1007/s00024-018-1962-2
Título revista:Pure and Applied Geophysics
Título revista abreviado:Pure Appl. Geophys.
ISSN:00334553
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00334553_v175_n8_p2575_Spagnotto

Referencias:

  • Álvarez, O., Folguera, A., Gimenez, M., Rupture area analysis of the Ecuador (Musine) M w = 7.8 thrust earthquake on April 16 2016, using GOCE derived gradients (2017) Geodesy and Geodynamics, 8, pp. 49-58
  • Álvarez, O., Folguera, A., Gimenez, M., Rupture area analysis of the Ecuador (Musine) M w = 7.8 thrust earthquake on April 16 2016, using GOCE derived gradients (2017) Geodesy and Geodynamics, 8, pp. 49-58
  • Álvarez, O., Gimenez, M.E., Braitenberg, C., Nueva metodología para el cálculo del efecto topográfico para la corrección de datos satelitales (2013) Revista Asociación Geologica Argentina, 70 (4), pp. 422-429
  • Álvarez, O., Gimenez, M.E., Braitenberg, C., Folguera, A., GOCE satellite derived gravity and gravity gradient corrected for topographic effect in the South Central Andes region (2012) Geophysical Journal International, 190 (2), pp. 941-959
  • Álvarez, O., Gimenez, M., Guillen, S., Tocho, C., Folguera, A., Pre-seismic GOCE derived geoid changes for forecasting megathrust earthquakes: the Pisagua 2014 earthquake (2018) Geodesy and Geodynamics, 9 (1), pp. 50-56
  • Álvarez, O., Nacif, S., Gimenez, M., Folguera, A., Braitenberg, A., Goce derived vertical gravity gradient delineates great earthquake rupture zones along the Chilean margin (2014) Tectonophysics, 622, pp. 198-215
  • Alvarez, O., Nacif, S., Spagnotto, S., Folguera, A., Gimenez, M., Chlieh, M., Braitenberg, C., Gradients from GOCE reveal gravity changes before Pisagua M w = 8.2 and Iquique M w = 7.7 large megathrust earthquakes (2015) Journal of South American Earth Sciences, 64, pp. 15-29
  • Alvarez, O., Pesce, A., Gimenez, M., Folguera, A., Soler, S., Wenjin, C., Analysis of the Illapel M w = 8.3 thrust earthquake rupture zone using GOCE derived gradients (2017) Pure and Applied Geophysics, 174, pp. 47-75
  • Amante, C., Eakins, B.W., ETOPO1, 1 arc-minute global relief model: Procedures, data sources and analysis (2009) NOAA Technical Memorandum NESDIS NGDC-24 National Geophysical Data Center, NOAA, , https://doi.org/10.7289/V5C8276M
  • Aron, F., Allmendinger, R.W., Cembrano, J., González, G., Yáñez, G., Permanent forearc extension and seismic segmentation: insights from the 2010 Maule earthquake, Chile (2013) Journal of Geophysical Research, 118, pp. 724-739
  • Bak, P., Tang, C., Earthquakes as a self-organized critical phenomenon (1989) Journal of Geophysical Research, 94 (B11), pp. 15635-15637
  • Barthelmes, F., (2013) Definition of Functionals of the Geopotential and Their Calculation from Spherical Harmonic Models: Theory and Formulas Used by the Calculation Service of the International Centre for Global Earth Models (ICGEM), , http://icgem.gfz-potsdam.de/ICGEM/, revised Edition (Scientific Technical Report; 09/02), Potsdam: Deutsches GeoForschungsZentrum GFZ, 32p
  • Bassett, D., Watts, A.B., Gravity anomalies, crustal structure, and seismicity at subduction zones: 1. Seafloor roughness and subducting relief (2015) Geochemistry, Geophysics, Geosystems, 16, pp. 1508-1540
  • Bassett, D., Watts, A.B., Gravity anomalies, crustal structure, and seismicity at subduction zones: 2. Interrelationships between fore-arc structure and seismogenic behavior (2015) Geochemistry, Geophysics, Geosystems, 16, pp. 1541-1576
  • Boulanger, O., Chouteau, M., Constraints in 3D gravity inversion (2001) Geophysical Prospecting, 49, pp. 265-280
  • Bouman, J., Ebbing, J., Fuchs, M., Reference frame transformation of satellite gravity gradients and topographic mass reduction (2013) Journal of Geophysical Research: Solid Earth, 118 (2), pp. 759-774
  • Braitenberg, C., Mariani, P., Ebbing, J., Sprlak, M., The enigmatic Chad lineament revisited with global gravity and gravity-gradient fields (2011) The formation and evolution of Africa: a synopsis of 3.8 Ga of earth history, 357, pp. 329-341. , Van Hinsbergen DJJ, Buiter SJH, Torsvik TH, Gaina C, Webb SJ, (eds), Geological Society, London
  • Braitenberg, C., Wienecke, S., Ebbing, J., Bom, W., Redfield, T., Joint gravity and isostatic analysis for basement studies—a novel tool (2007) EGM 2007 International Wokshop, Innovation in EM, Grav and Mag Methods: A New Perspective for Exploration, Villa Orlandi, , http://www2.ogs.trieste.it/egm2007/, Capri - Italy, 15-18 April 2007
  • Byerlee, J.D., Friction of rocks (1978) Pure and Applied Geophysics, 116 (4-5), pp. 615-626
  • Chaves, C.A.M., Ussami, N., Modeling 3-D density distribution in the mantle from inversion of geoid anomalies: Application to the Yellowstone Province (2013) Journal of Geophysical Research: Solid Earth, 118, pp. 6328-6351
  • Cowie, P.A., Vanneste, C., Sornette, D., Statistical physics model for the spatiotemporal evolution of faults (1993) Journal of Geophysical Research, 98 (B12), pp. 21809-21821
  • Delouis, B., Nocquet, J., Vallée, M., Slip distribution of the February 27, 2010 M w = 8.8 Maule earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data (2010) Geophysical Research Letters
  • DeMets, C., Gordon, R.G., Argus, D.F., Geologically current plate motions (2010) Geophysical Journal International, 181 (1), pp. 1-80
  • DeMets, C., Gordon, R.G., Argus, D.F., Stein, S., Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motion (1994) Geophysical Research Letters, 21 (1994), pp. 2191-2194
  • Divins, D.L., (2003) Total sediment thickness of the World’s Oceans and Marginal Seas, , NOAA National Geophysical Data Center, Boulder
  • Featherstone, W., On the use of the geoid in geophysics: a case study over the north west shelf of australia (1997) Exploration Geophysics, 28 (1-2), pp. 52-57
  • Förste, C., Bruinsma, S.L., Abrikosov, O., Lemoine, J.-M., Marty, J.C., Flechtner, F., Balmino, G., Biancale, R., EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse (2014) GFZ Data Services
  • Freed, A., 2005, Earthquake triggering by static, dynamic and postseismic stress transfer (2005) Annual Review of Earth and Planetary Sciences, 33, pp. 335-367
  • Grombein, T., Heck, B., Seitz, K., Optimized formulas for the gravitational field of a tesseroid (2013) Journal of Geodesy, 87, pp. 645-660
  • Gusman, A.R., Mulia, I.E., Satake, K., Optimum sea surface displacement and fault slip distribution of the 2017 Tehuantepec earthquake (M w 8.2) in Mexico estimated from tsunami waveforms (2018) Geophysical Research Letters, 45 (2), pp. 646-653
  • Hacker, B.R., Peacock, S.M., Abers, G.A., Holloway, S.D., Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? (2003) Journal of Geophysical Research, 108 (b1), p. 2030
  • Havskov, J., Singh, S., Novelo, D., Geometry of the Benioff zone in the Tehuantepec area in Southern México (1982) Geofísica Internacional, 21-4, pp. 325-330
  • Hayes, G., Preliminary Finite Fault Results for the Sep 08 (2017) 2017 Mw 8.2 Earthquake, , https://earthquake.usgs.gov/earthquakes/eventpage/us2000ahv0#finite-fault
  • Hicks, S.P., Rietbrock, A., Rydera, I.M.A., Lee, C.-S., Miller, M., Anatomy of a megathrust: The 2010 M8.8 Maule, Chile earthquake rupture zone imaged using seismic tomography (2014) Earth and Planetary Science Letters, 405, pp. 142-155
  • Hofmann-Wellenhof, B., Moritz, H., (2006) Physical geodesy, p. 286. , 2, Springer, Berlin
  • Janak, J., Sprlak, M., New software for gravity field modelling using spherical armonic (2006) Geodetic and Cartographic Horizon, 52, pp. 1-8. , (in Slovak
  • Jiao, W., Silver, P.G., Fei, Y., Prewitt, C.T., Do intermediate- and deep-focus earthquakes occur on pre-existing weak zones? An examination of the Tonga subduction zone (2000) Journal Geophysical Research, 105 (B12), pp. 28125-28138
  • Jung, H., Fei, Y., Silver, P., Green, H., Frictional sliding in serpentine at very high pressure (2009) Earth and Planetary Science Letters, 277, pp. 273-279
  • Jung, H., Green, H.W., II, Dobrzinetskaya, L.F., Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change (2004) Nature, 428, pp. 545-549
  • Kelleher, J.A., McCann, W.R., Buoyant zones, great earthquakes, and unstable boundaries of subduction (1976) Journal of Geophysical Research, 81, pp. 4885-4908
  • Kelleher, J.A., Sykes, L.R., Oliver, J., Possible criteria for predicting earthquake locations and their applications to major plate boundaries of the Pacific and Caribbean region (1973) Journal of Geophysical Research, 78, pp. 2547-2585
  • Kilb, D., Gomberg, J., Fodin, P.B., Aftershock triggering by complete Coulomb stress changes (2002) Journal of Geophysical Research
  • King, G.C.P., Stein, R.S., Lin, J., Static stress changes and the triggering of earthquakes (1994) Bulletin of the Seismological Society of America, 84 (3), pp. 935-953
  • Kirby, S., Engdahl, R.E., Denlinger, R., Intermediate ‐ Depth Intraslab Earthquakes and Arc Volcanism as Physical Expressions of Crustal and Uppermost Mantle Metamorphism in Subducting Slabs (1996) Bebout, 96, pp. 195-214. , https://doi.org/10.1029/GM096p0195, G.E., School, D.W., Kirby, S.H., Platt, J.P., Wiley
  • Konstantino, K., Moment magnitude–rupture area scaling and stress-drop variations for earthquakes in the Mediterranean region (2014) Bulletin of the Seismological Society of America
  • Kopp, H., Invited review paper: the control of subduction zone structural complexity and geometry on margin segmentation and seismicity (2013) Tectonophysics, 589, pp. 1-16
  • Kostoglodov, V., Pacheco, F.J., (1999) 100 Years of Seismicity in Mexico, , http://usuarios.geofisica.unam.mx/vladimir/sismos/100years.html, Instituto de Geofísica, UNAM (poster)
  • Laske, G., Masters, G., Ma, Z., Pasyanos, M., Update on CRUST1.0—A 1-degree global model of earth’s crust (2013) Geophysics Research Abstracts, 15, p. 2658
  • Last, B.J., Kubik, K., Compact gravity inversion (1983) Geophysics, 48, pp. 713-721
  • LayT, Y.L., Ammon, C.J., Kanamori, H., Intraslab rupture triggering megathrust rupture co-seismically in the December 17, 2016 Solomon Islands M w 7.9 earthquake (2017) GJR, 44 (3), pp. 1286-1292
  • Leonard, M., Earthquake fault scaling: self-consistent relating of rupture length, width, average displacement, and moment release (2010) Bulletin of the Seismological Society of America, 100 (5A), pp. 1971-1988
  • Li, X., Vertical resolution: Gravity versus vertical gravity gradient (2001) The Leading Edge, 20, pp. 901-904
  • Li, Y., Oldenburg, D.W., 3-D inversion of magnetic data (1996) Geophysics, 61, pp. 394-408
  • Li, Y., Oldenburg, D.W., 3-D inversion of gravity data (1998) Geophysics, 63, pp. 109-119
  • Lin, J., Stein, R.S., Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults (2004) Journal of Geophysical Research, 109, p. B02303
  • Lin, J., Stein, R.S., Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults (2004) Journal of Geophysical Research, 109, p. B02303
  • Loveless, J.P., Allmendinger, R.W., Pritchard, M.E., González, G., Normal and reverse faulting driven by the subduction zone earthquake cycle in the northern Chilean fore arc (2010) Tectonics, 29 (2), p. TC2001
  • Lyon-Caen, H., Barrier, E., Lasserre, C., Franco, A., Arzu, I., Chiquin, L., Chiquin, M., Wolf, R., Kinematics of the North American–Caribbean-Cocos plates in Central America from new GPS measurements across the Polochic-Motagua fault system (2006) Geophysical Research Letters, 33, p. L19309
  • Manea, M., Manea, V.C., Kostoglodov, V., Guzmán-Speziale, M., Elastic thickness of the oceanic lithosphere beneath Tehuantepec ridge (2005) Geofísica Internacional, 44 (2), pp. 157-168
  • Meade, C., Jeanloz, R., Deep focus earthquakes and recycling of water into the Earth’s mantle (1991) Science, 252, pp. 68-72
  • Melgar, D., (2009) El proceso de subducción en la zona del Istmo de Tehuantepec a partir de funciones receptor, , Tesis de Ingeniería, UNAM
  • Mendoza, C., Hartzell, S., Monfret, T., Wide band analysis of the 3 March 1985 central Chile earthquake: overall source process and rupture history (1994) Bulletin of the Seismological Society of America, 84, pp. 269-283
  • Menke, W., (1984) Geophysical data analysis: Discrete inverse theory, p. 260. , Academic Press Inc., Cambridge
  • Metois, M., Vigny, C., Socquet, A., Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38°–18°S) (2016) Pure and Applied Geophysics, , (in press
  • Metois, M., Vigny, C., Socquet, A., Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38°–18°S) (2016) Pure and Applied Geophysics, , (in press
  • Müller, R.D., Sdrolias, M., Gaina, C., Roest, W.R., Age, spreading rates, and spreading asymmetry of the world’s ocean crust (2008) Geochemistry, Geophysics, Geosystems, 9, pp. 1-19
  • Nishenko, S.P., Circum-Pacific seismic potential: 1989–1999 (1991) Pure and Applied Geophysics, 135, pp. 169-259
  • Pacheco, J., Sykes, L.R., Seismic moment catalog of large shallow earthquakes, 1900 to 1989 (1992) Bulletin of the Seismological Society of America, 82, pp. 1306-1349
  • Parsons, T., Stein, R.S., Simpson, R.W., Reasenberg, P.A., Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults (1999) Journal of Geophysical Research, 104, pp. 20183-20202
  • Pérez-Campos, X., Kim, Y., Husker, A., Davis, P., Clayton, R., Iglesias, A., Pacheco, J., Gurnis, M., Horizontal subduction and truncation of the Cocos Plate beneath central Mexico (2008) JGR
  • Pilkington, M., 3-D magnetic imaging using conjugate gradients (1997) Geophysics, 62, pp. 1132-1142
  • Pollitz, F.F., Stein, R.S., Sevilgen, V., Bürgmann, R., The 11 April 2012 M = 8.6 east Indian Ocean earthquake triggered large aftershocks worldwide (2012) Nature
  • Ponce, L., Gaulon, R., Suárez, G., Lomas, E., Geometry and state of stress of the downgoing Cocos plate in the Isthmus of Tehuantepec, Mexico (1992) Geophysical Research Letters, 19 (8), pp. 773-776
  • Pritchard, M.E., Ji, C., Simons, M., Distribution of slip from 11 M w > 6 earthquakes in the northern Chile subduction zone (2006) Journal of Geophysical Research, 111, p. B10302
  • Radiguet, M., Perfettini, H., Cotte, N., Gualandi, A., Valette, B., Kostoglodov, V., Lhomme, T., Campillo, M., Triggering of the 2014 M 7.3 Papanoa earthquake by a slow slip event in Guerrero, Mexico M (2016) Nature
  • Ranero, C.R., Morgan, J.P., McIntosh, K., Reichert, C., Bending-related faulting and mantle serpentinization at the Middle America trench (2003) Nature, 425, pp. 367-373
  • Ranero, C.R., Villasenor, A., Morgan, J.P., Weinrebe, W., Relationship between bend-faulting at trenches and intermediate-depth seismicity (2005) Geochemistry, Geophysics, Geosystems, 6 (12), p. Q12002
  • Rebollar, C., Espíndola, V., Uribe, A., Mendoza, A., Pérez-Vertti, A., Distributions of stresses and geometry of the Wadati-Benioff zone under Chiapas, Mexico (1999) Geofísica Internacional, 38 (2), pp. 95-106
  • Richardson, R., Solomon, S., Apparent Stress and Stress Drop for Intraplate Earthquakes Tectonic Stress in the Plates (1977) Pure and Applied Geophysics, 115 (1-2), pp. 317-331
  • Rietbrock, A., Ryder, I., Hayes, G., Haberland, C., Comte, D., Roecker, S., Lyon-Caen, H., Aftershock seismicity of the 2010 Maule M w = 8.8, Chile, earthquake: correlation between co-seismic slip models and aftershock distribution? (2012) Geophysical Research Letters, 39, p. 8310
  • Rodriguez-Péres, Q., Ottomöller, L., 2013 Finite-fault scaling relations in Mexico (2013) Geophysical Journal International, 193, pp. 1570-1588
  • Ryder, I., Rietbrock, A., Kelson, K., Burgmann, R., Floyd, M., Socquet, A., Vigny, C., Carrizo, D., Large extensional aftershocks in the continental forearc triggered by the 2010 Maule earthquake, Chile (2012) Geophysical Journal International, 188, pp. 879-890
  • Singh, S.K., Astiz, L., Havskov, J., Seismic gaps and recurrence periods of large earthquakes along the Mexican subduction zone (1981) Geophysical Research Letters, 9, pp. 633-636
  • Singh, S.K., Suárez, G., Domínguez, T., The Oaxaca, Mexico, earthquake of 1931: lithospheric normal faulting in the subducted Cocos plate (1985) Nature, 317 (6032), pp. 56-58
  • Song, T.R., Simons, M., Large trench-parallel gravity variations predict seismogenic behavior in subduction zones (2003) Science, 301, pp. 630-633
  • Spagnotto, S., Triep, E., Giambiagi, L., Lupari, M., Triggered seismicity in the Andean arc region via static stress variation by the M w = 8.8, February 27, 2010, Maule earthquake (2015) Journal of South American Earth Sciences, 63, pp. 36-47
  • Spagnotto, S., Triep, E., Giambiagi, L., Nacif, S., Álvarez, O., New evidences of rupture of crust and mantle in the subducted Nazca plate at intermediate-depth (2015) Journal of South American Earth Sciences, 58, pp. 141-147. , 0895-9811
  • Toda, S., Stein, R.S., The 2011 M = 9.0 Tohoku oki earthquake more than doubled the probability of large shocks beneath Tokyo (2013) Geophysical Research Letters, 40, pp. 1-5
  • Toda, S., Stein, R., Richards-Dinger, K., Bozkurt, S., Forecasting the evolution of seismicity in southern California: animations built on earthquake stress transfer (2005) Journal of Geophysical Research, 110 (B5), p. B05S16
  • Uieda, L., Barbosa, V.C., Braitenberg, C.F., Tesseroids: forward modeling gravitational fields in spherical coordinates (2016) Geophysics, 81 (5), pp. F41-F48
  • Uieda, L., Ussami, N., Braitenberg, C.F., Computation of the gravity gradient tensor due to topographic masses using tesseroids (2010) Eos Transactions AGU, V.91, N.26, Meeting of the Americas Supplement, Abstract G22A-04, p. 2010. , http://code.google.com/p/tesseroids/, Washington, American Geophysical Union
  • Wells, R.E., Blakely, R.J., Sugiyama, Y., Scholl, D.W., Dinterman, P.A., Basin centered asperities in great subduction zone earthquakes: A link between slip, subsidence and subduction erosion? (2003) Journal of Geophysical Research, 108 (B10), pp. 2507-2536
  • Wells, R.E., Blakely, R.J., Sugiyama, Y., Scholl, D.W., Dinterman, P.A., Basin centered asperities in great subduction zone earthquakes: a link between slip, subsidence and subduction erosion? (2003) Journal of Geophysical Research, 108 (B10), pp. 2507-2536
  • Whittaker, J., Goncharov, A., Williams, S., Müller, R.D., Leitchenkov, G., Global sediment thickness dataset updated for the Australian–Antarctic Southern Ocean (2013) Geochemistry Geophysics Geosystems, 14, pp. 3297-3305
  • Wienecke, S., Braitenberg, C., Goetze, H.J., A new analytical solution estimating the flexural rigidity in the Central Andes (2007) Geophysics Journal International, 169, pp. 789-794
  • Wyss, M., Apparent Stresses of Earthquakes on Ridges compared to Apparent Stresses of Earthquakes in Trenches (1970) Geophysical Journal International, 19, pp. 479-484
  • Ye, L., Lay, T., Bai, Y., Cheung, K.F., Kanamori, H., The 2017 M w 8.2 Chiapas, Mexico, Earthquake: Energetic slab detachment (2017) Geophysical Research Letters, 44 (23), pp. 11824-11832
  • Zhdanov, M.S., (2002) Geophysical inverse theory and regularization problems, methods in geochemistry and geophysics, 36, p. 668. , Elsevier Science, Amsterdam, New York, Tokyo
  • Zoback, M.D., Zoback, M.L., (2002) Stress in the Earth’s lithosphere: Encyclopedia of physical science and technology, 16, pp. 143-154. , 3, Academic Press, Cambridge

Citas:

---------- APA ----------
Spagnotto, S., Alvarez, O. & Folguera, A. (2018) . Static Stress Increase in the Outer Forearc Produced by MW 8.2 September 8, 2017 Mexico Earthquake and its Relation to the Gravity Signal. Pure and Applied Geophysics, 175(8), 2575-2593.
http://dx.doi.org/10.1007/s00024-018-1962-2
---------- CHICAGO ----------
Spagnotto, S., Alvarez, O., Folguera, A. "Static Stress Increase in the Outer Forearc Produced by MW 8.2 September 8, 2017 Mexico Earthquake and its Relation to the Gravity Signal" . Pure and Applied Geophysics 175, no. 8 (2018) : 2575-2593.
http://dx.doi.org/10.1007/s00024-018-1962-2
---------- MLA ----------
Spagnotto, S., Alvarez, O., Folguera, A. "Static Stress Increase in the Outer Forearc Produced by MW 8.2 September 8, 2017 Mexico Earthquake and its Relation to the Gravity Signal" . Pure and Applied Geophysics, vol. 175, no. 8, 2018, pp. 2575-2593.
http://dx.doi.org/10.1007/s00024-018-1962-2
---------- VANCOUVER ----------
Spagnotto, S., Alvarez, O., Folguera, A. Static Stress Increase in the Outer Forearc Produced by MW 8.2 September 8, 2017 Mexico Earthquake and its Relation to the Gravity Signal. Pure Appl. Geophys. 2018;175(8):2575-2593.
http://dx.doi.org/10.1007/s00024-018-1962-2