Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


As a part of our project aimed at developing new safe chemotherapeutic agents against tropical diseases, a series of aryl derivatives of 2- and 3-aminoquinoline, some of them new compounds, was designed, synthesized, and evaluated as antiproliferative agents against Trypanosoma cruzi, the parasite responsible for American trypanosomiasis (Chagas’ disease), and Leishmania mexicana, the etiological agent of Leishmaniasis. Some of them showed a remarkable activity as parasite growth inhibitors. Fluorine-containing derivatives 11b and 11c were more than twice more potent than geneticin against intracellular promastigote form of Leishmania mexicana exhibiting both IC 50 values of 41.9 μM. The IC 50 values corresponding to fluorine and chlorine derivatives 11b–d were in the same order than benznidazole against epimastigote form. These drugs are interesting examples of effective antiparasitic agents with outstanding potential not only as lead drugs but also to be used for further in vivo studies. In addition, the obtained compounds showed no toxicity in Vero cells, which makes them good candidates to control tropical diseases. Regarding the probable mode of action, assayed quinoline derivatives interacted with hemin, inhibiting its degradation and generating oxidative stress that is not counteracted by the antioxidant defense system of the parasite. © 2018 Elsevier Inc.


Documento: Artículo
Título:Synthesis and biological evaluation of new quinoline derivatives as antileishmanial and antitrypanosomal agents
Autor:Chanquia, S.N.; Larregui, F.; Puente, V.; Labriola, C.; Lombardo, E.; García Liñares, G.
Filiación:Laboratorio de Biocatálisis. Departamento de Química Orgánica y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, piso 3, C1428EGA Buenos Aires, Argentina
Centro de Investigaciones sobre Porfirias y Porfirinas (CIPYP, UBA-CONICET), Hospital de Clínicas José de San Martín, Avenida Córdoba 2351, Buenos Aires, 1120, Argentina
Instituto de Investigaciones Bioquímicas, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
Palabras clave:Chagas’ disease; Hemin interaction; Leishmaniasis; Oxidative damage; Quinoline derivatives; 2 (2 fluor phenylamino)quinoline; 2 (3 fluor phenylamino)quinoline; 2 (4 carboxy phenylamino)quinoline; 2 (4 chloro phenylamino)quinoline; 2 (4 fluor phenylamino)quinoline; 2 (4 vinyl phenylamino)quinoline; 3 (2 fluor phenylamino)quinoline; 3 (3 fluor phenylamino)quinoline; 3 (4 carboxy phenylamino)quinoline; 3 (4 chloro phenylamino)quinoline; 3 (4 fluor phenylamino)quinoline; antibiotic g 418; antileishmanial agent; antimitotic agent; antitrypanosomal agent; benznidazole; cytotoxic agent; hemin; quinoline derivative; thiol group; unclassified drug; animal cell; antiproliferative activity; antiprotozoal activity; Article; arylation; binding assay; CC50; controlled study; cytotoxicity assay; drug cytotoxicity; drug design; drug structure; drug synthesis; epimastigote; growth inhibition; IC50; in vitro study; isomer; Leishmania mexicana; nonhuman; oxidation reduction state; oxidative stress; percentage of viable cells; priority journal; promastigote; Trypanosoma cruzi; Vero cell line
Página de inicio:526
Página de fin:534
Título revista:Bioorganic Chemistry
Título revista abreviado:Bioorg. Chem.
CAS:antibiotic g 418, 49863-47-0, 83855-92-9; benznidazole, 22994-85-0; hemin, 16009-13-5


  • Urbina, J.A., Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches (2010) Acta Trop., 115 (1), pp. 55-68
  • Second, W., Report on Neglected Tropical Disease, Sustaining the Drive to Overcome the Global Impact of Neglected Tropical Disease (2013); Linares, G.E.G., Ravaschino, E.L., Rodriguez, J.B., Progresses in the field of drug design to combat tropical protozoan parasitic diseases (2006) Curr. Med. Chem., 13 (3), pp. 335-360
  • De Souza, W., Cell biology of Trypanosoma cruzi (1984) Int. Rev. Cytol., 86, pp. 197-283
  • Urbina, J., New insights in Chagas disease treatment (2010) Drugs Future, 35 (5), pp. 409-419
  • Shikanai-Yasuda, M.A., Carvalho, N.B., Oral transmission of chagas disease (2012) Clin. Infect. Dis., 54 (6), pp. 845-852
  • Chung, M.C., Ferreira, E.I., Santos, J.L., Giarolla, J., Rando, D.G., Almeida, A.E., Bosquesi, P.L., Blau, L., Prodrugs for the treatment of neglected diseases (2008) Molecules, 13 (3), pp. 616-677
  • Organization, W.H., (2012), Research Priorities for Chagas disease, Human African Trypanosomiasis and Leishmaniasis, World Health Organization technical report series 975 v; Dostálová, A., Volf, P., Leishmania development in sand flies: parasite-vector interactions overview (2012) Parasites Vectors, 5 (1), p. 276
  • Croft, S.L., Yardley, V., Chemotherapy of leishmaniasis (2002) Curr. Pharm. Des., 8 (4), pp. 319-342
  • Marsden, P.D., Jones, T.C., Clinical manifestations, diagnosis and treatment of leishmaniasis (1985), pp. 183-198. , Leishmaniasis. Elsevier Science Publishers Amsterdam, The Netherlands; Hirst, S., Stapley, L., The dawn of a new millennium (2000) Parasitology Today, 16 (1)
  • Diro, E., Ritmeijer, K., Boelaert, M., Alves, F., Mohammed, R., Abongomera, C., Ravinetto, R., Adera, C., Use of pentamidine as secondary prophylaxis to prevent visceral leishmaniasis relapse in HIV infected patients, the first twelve months of a prospective cohort study (2015) PLoS Negl Trop Dis, 9 (10)
  • Desjeux, P., Alvar, J., Leishmania/HIV co-infections: epidemiology in Europe (2003) Ann. Trop. Med. Parasitol., 97 (sup1), pp. 3-15
  • Docampo, R., Moreno, S.N.J., Biochemistry of Trypanosoma cruzi (2010) Am. Trypanosomiasis, pp. 365-392
  • Urbina, J.A., Chemotherapy of Chagas disease (2002) Curr. Pharm. Des., 8 (4), pp. 287-295
  • Zauli-Nascimento, R.C., Miguel, D.C., Yokoyama-Yasunaka, J.K., Pereira, L.I., Pelli de Oliveira, M.A., Ribeiro-Dias, F., Dorta, M.L., Uliana, S.R., In vitro sensitivity of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis Brazilian isolates to meglumine antimoniate and amphotericin B (2010) Trop. Med. Int. Health, 15 (1), pp. 68-76
  • Croft, S.L., Sundar, S., Fairlamb, A.H., Drug resistance in leishmaniasis (2006) Clin. Microbiol. Rev., 19 (1), pp. 111-126
  • Chakravarty, J., Sundar, S., Drug resistance in leishmaniasis (2010) J. Glob. Infect. dis., 2 (2), p. 167
  • Croft, S.L., Barrett, M.P., Urbina, J.A., Chemotherapy of trypanosomiases and leishmaniasis (2005) Trends Parasitol., 21 (11), pp. 508-512
  • Urbina, J.A., Docampo, R., Specific chemotherapy of Chagas disease: controversies and advances (2003) Trends Parasit., 19 (11), pp. 495-501
  • Ouellette, M., Drummelsmith, J., Papadopoulou, B., Leishmaniasis: drugs in the clinic, resistance and new developments (2004) Drug Resist. Updates, 7 (4), pp. 257-266
  • Sindermann, H., Engel, J., Development of miltefosine as an oral treatment for leishmaniasis (2006) Trans. R. Soc. Trop. Med. Hyg., 100, pp. S17-S20
  • Dorlo, T.P., Balasegaram, M., Beijnen, J.H., de Vries, P.J., Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis (2012) J. Antimicrob. Chemother., 67 (11), pp. 2576-2597
  • Ganguly, N., Oral miltefosine may revolutionize treatment of visceral leishmaniasis (2002) TDR News, 68 (2)
  • Pérez-Victoria, F.J., Castanys, S., Gamarro, F., Leishmania donovani resistance to miltefosine involves a defective inward translocation of the drug (2003) Antimicrob. Agents Chemother., 47 (8), pp. 2397-2403
  • Carvalho, L., Luque-Ortega, J.R., López-Martín, C., Castanys, S., Rivas, L., Gamarro, F., The 8-aminoquinoline analogue sitamaquine causes oxidative stress in Leishmania donovani promastigotes by targeting succinate dehydrogenase (2011) Antimicrob. Agents Chemother., 55 (9), pp. 4204-4210
  • Loiseau, P., Cojean, S., Schrével, J., Sitamaquine as a putative antileishmanial drug candidate: from the mechanism of action to the risk of drug resistance (2011) Parasite, 18 (2), pp. 115-119
  • Fernández, M.M., Malchiodi, E.L., Algranati, I.D., Differential effects of paromomycin on ribosomes of Leishmania mexicana and mammalian cells (2011) Antimicrob. Agents Chemother., 55 (1), pp. 86-93
  • Urbina, J.A., Recent clinical trials for the etiological treatment of chronic Chagas disease: advances, challenges and perspectives (2015) J. Eukaryot. Microbiol., 62 (1), pp. 149-156
  • Lechuga, G.C., Borges, J.C., Calvet, C.M., de Araújo, H.P., Zuma, A.A., do Nascimento, S.B., Motta, M.C.M., Bourguignon, S.C., Interactions between 4-aminoquinoline and heme: promising mechanism against Trypanosoma cruzi (2016) Int. J. Parasitol.: Drugs Drug Resistance, 6 (3), pp. 154-164
  • Krafts, K., Hempelmann, E., Skórska-Stania, A., From methylene blue to chloroquine: a brief review of the development of an antimalarial therapy (2012) Parasitol. Res., 111 (1), pp. 1-6
  • Srivastava, V., Lee, H., Chloroquine-based hybrid molecules as promising novel chemotherapeutic agents (2015) Eur. J. Pharmacol., 762, pp. 472-486
  • Li, Y., de Kock, C., Smith, P.J., Guzgay, H., Hendricks, D.T., Naran, K., Mizrahi, V., Smith, G.S., Synthesis, characterization, and pharmacological evaluation of silicon-containing aminoquinoline organometallic complexes as antiplasmodial, antitumor, and antimycobacterial agents (2012) Organometallics, 32 (1), pp. 141-150
  • Abouzid, K., Shouman, S., Design, synthesis and in vitro antitumor activity of 4-aminoquinoline and 4-aminoquinazoline derivatives targeting EGFR tyrosine kinase (2008) Bioorg. Med. Chem., 16 (16), pp. 7543-7551
  • Taher, A.T., Khalil, N.A., Ahmed, E.M., Ragab, Y.M., Synthesis of certain 2-substituted-1H-benzimidazole derivatives as antimicrobial and cytotoxic agents (2012) Chem. Pharm. Bull., 60 (6), pp. 778-784
  • Fournet, A., Hocquemiller, R., Roblot, F., Cavé, A., Richomme, P., Bruneton, J., Les Chimanines, nouvelles quinoleines substituees en 2, isolees d'une plante bolivienne antiparasitaire: Galipea longiflora (1993) J. Nat. Prod., 56. , 1547 1547
  • Fakhfakh, M.A., Fournet, A., Prina, E., Mouscadet, J.-F., Franck, X., Hocquemiller, R., Figadère, B., Synthesis and biological evaluation of substituted quinolines: potential treatment of protozoal and retroviral co-infections (2003) Bioorg. Med. Chem., 11 (23), pp. 5013-5023
  • Kraus, J.M., Verlinde, C.L., Karimi, M., Lepesheva, G.I., Gelb, M.H., Buckner, F.S., Rational modification of a candidate cancer drug for use against Chagas disease (2009) J. Med. Chem., 52 (6), p. 1639
  • Kraus, J.M., Tatipaka, H.B., McGuffin, S.A., Chennamaneni, N.K., Karimi, M., Arif, J., Verlinde, C.L., Gelb, M.H., Second generation analogs of the cancer drug clinical candidate tipifarnib for anti-Chagas disease drug discovery (2010) J. Med. Chem., 53 (10), p. 3887
  • Gopinath, V.S., Pinjari, J., Dere, R.T., Verma, A., Vishwakarma, P., Shivahare, R., Moger, M., Bose, P., Design, synthesis and biological evaluation of 2-substituted quinolines as potential antileishmanial agents (2013) Eur. J. Med. Chem., 69, pp. 527-536
  • Slater, A.F., Chloroquine: mechanism of drug action and resistance in Plasmodium falciparum (1993) Pharmacol. Ther., 57 (2-3), pp. 203-235
  • Pagola, S., Stephens, P.W., Bohle, D.S., Kosar, A.D., Madsen, S.K., The structure of malaria pigment β-haematin (2000) Nature, 404 (6775), pp. 307-310
  • Sullivan, D.J., Matile, H., Ridley, R.G., Goldberg, D.E., A common mechanism for blockade of heme polymerization by antimalarial quinolines (1998) J. Biol. Chem., 273 (47), pp. 31103-31107
  • Combrinck, J.M., Mabotha, T.E., Ncokazi, K.K., Ambele, M.A., Taylor, D., Smith, P.J., Hoppe, H.C., Egan, T.J., Insights into the role of heme in the mechanism of action of antimalarials (2013) ACS Chem. Biol., 8 (1), p. 133
  • Thomé, R., Lopes, S.C.P., Costa, F.T.M., Verinaud, L., Chloroquine: modes of action of an undervalued drug (2013) Immunol. Lett., 153 (1), pp. 50-57
  • García Liñares, G., Parraud, G., Labriola, C., Baldessari, A., Chemoenzymatic synthesis and biological evaluation of 2- and 3-hydroxypyridine derivatives against Leishmania mexicana (2012) Bioorg. Med. Chem., 20 (15), pp. 4614-4624
  • Abdel-Megeed, M.F., Badr, B.E., Azaam, M.M., El-Hiti, G.A., Synthesis, antimicrobial and anticancer activities of a novel series of diphenyl 1-(pyridin-3-yl) ethylphosphonates (2012) Bioorg. Med. Chem., 20 (7), pp. 2252-2258
  • Kassis, P., Brzeszcz, J., Bénéteau, V., Lozach, O., Meijer, L., Le Guével, R., Guillouzo, C., Colliandre, L., Synthesis and biological evaluation of new 3-(6-hydroxyindol-2-yl)-5-(Phenyl) pyridine or pyrazine V-Shaped molecules as kinase inhibitors and cytotoxic agents (2011) Eur. J. Med. Chem., 46 (11), pp. 5416-5434
  • Pez, D., Leal, I., Zuccotto, F., Boussard, C., Brun, R., Croft, S.L., Yardley, V., Gilbert, I.H., 2, 4-Diaminopyrimidines as inhibitors of leishmanial and trypanosomal dihydrofolate reductase (2003) Bioorg. Med. Chem., 11 (22), pp. 4693-4711
  • Iwaniuk, D.P., Whetmore, E.D., Rosa, N., Ekoue-Kovi, K., Alumasa, J., de Dios, A.C., Roepe, P.D., Wolf, C., Synthesis and antimalarial activity of new chloroquine analogues carrying a multifunctional linear side chain (2009) Bioorg. Med. Chem., 17 (18), pp. 6560-6566
  • Stocks, P.A., Raynes, K.J., Bray, P.G., Park, B.K., O'Neill, P.M., Ward, S.A., Novel short chain chloroquine analogues retain activity against chloroquine resistant K1 Plasmodium falciparum (2002) J. Med. Chem., 45 (23), pp. 4975-4983
  • Vitaku, E., Smith, D.T., Njardarson, J.T., Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals (2014) J. Med. Chem., 57 (24), pp. 10257-10274
  • Bompart, D., Núñez-Durán, J., Rodríguez, D., Kouznetsov, V.V., Gómez, C.M.M., Sojo, F., Arvelo, F., Serrano-Martín, X., Anti-leishmanial evaluation of C2-aryl quinolines: Mechanistic insight on bioenergetics and sterol biosynthetic pathway of Leishmania braziliensis (2013) Bioorg. Med. Chem., 21 (14), pp. 4426-4431
  • Shah, N.M., Patel, M.P., Patel, R.G., New N-arylamino biquinoline derivatives: synthesis, antimicrobial, antituberculosis, and antimalarial evaluation (2012) Eur. J. Med. Chem., 54, pp. 239-247
  • de Meneses Santos, R., Barros, P.R., Bortoluzzi, J.H., Meneghetti, M.R., da Silva, Y.K.C., da Silva, A.E., da Silva Santos, M., Alexandre-Moreira, M.S., Synthesis and evaluation of the anti-nociceptive and anti-inflammatory activity of 4-aminoquinoline derivatives (2015) Bioorg. Med. Chem., 23 (15), pp. 4390-4396
  • Liao, W., Hu, G., Guo, Z., Sun, D., Zhang, L., Bu, Y., Li, Y., Gong, P., Design and biological evaluation of novel 4-(2-fluorophenoxy) quinoline derivatives bearing an imidazolone moiety as c-Met kinase inhibitors (2015) Bioorg. Med. Chem., 23 (15), pp. 4410-4422
  • Upadhayaya, R.S., Dixit, S.S., Földesi, A., Chattopadhyaya, J., New antiprotozoal agents: their synthesis and biological evaluations (2013) Bioorg. Med. Chem. Lett., 23 (9), pp. 2750-2758
  • Quintana, P.G., García Liñares, G., Chanquia, S.N., Gorojod, R.M., Kotler, M.L., Baldessari, A., Improved enzymatic procedure for the synthesis of anandamide and N-fatty acylalkanolamine analogues: a combination strategy to antitumor activity (2016) Eur. J. Org. Chem., 2016 (3), pp. 518-528
  • Chanquia, S.N., Boscaro, N., Alche, L., Baldessari, A., Liñares, G.G., An efficient lipase-catalyzed synthesis of fatty acid derivatives of vanillylamine with antiherpetic activity in acyclovir-resistant strains (2017) ChemistrySelect, 2 (4), pp. 1537-1543
  • Zígolo, M.A., Salinas, M., Alché, L., Baldessari, A., Liñares, G.G., Chemoenzymatic synthesis of new derivatives of glycyrrhetinic acid with antiviral activity. Molecular docking study (2018) Bioorg. Chem., 78, pp. 210-219
  • Chan, D.M., Monaco, K.L., Wang, R.-P., Winters, M.P., New N-and O-arylations with phenylboronic acids and cupric acetate (1998) Tetrahedron Lett., 39 (19), pp. 2933-2936
  • Evans, D.A., Katz, J.L., West, T.R., Synthesis of diaryl ethers through the copper-promoted arylation of phenols with arylboronic acids. An expedient synthesis of thyroxine (1998) Tetrahedron Lett., 39 (19), pp. 2937-2940
  • Lam, P.Y., Clark, C.G., Saubern, S., Adams, J., Winters, M.P., Chan, D.M., Combs, A., New aryl/heteroaryl C N bond cross-coupling reactions via arylboronic acid/cupric acetate arylation (1998) Tetrahedron Lett., 39 (19), pp. 2941-2944
  • Liñares, G.G., Gismondi, S., Codesido, N.O., Moreno, S.N., Docampo, R., Rodriguez, J.B., Fluorine-containing aryloxyethyl thiocyanate derivatives are potent inhibitors of Trypanosoma cruzi and Toxoplasma gondii proliferation (2007) Bioorg. Med. Chem. Lett., 17 (18), pp. 5068-5071
  • Ciccarelli, A., Araujo, L., Batlle, A., Lombardo, E., Effect of haemin on growth, protein content and the antioxidant defence system in Trypanosoma cruzi (2007) Parasitology, 134 (7), pp. 959-965
  • Ciccarelli, A.B., Frank, F.M., Puente, V., Malchiodi, E.L., Batlle, A., Lombardo, M.E., Antiparasitic effect of vitamin B12 on Trypanosoma cruzi (2012) Antimicrob. Agents Chemother., 56 (10), pp. 5315-5320
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the Folin phenol reagent (1951) J. Biol. Chem., 193 (1), pp. 265-275


---------- APA ----------
Chanquia, S.N., Larregui, F., Puente, V., Labriola, C., Lombardo, E. & García Liñares, G. (2019) . Synthesis and biological evaluation of new quinoline derivatives as antileishmanial and antitrypanosomal agents. Bioorganic Chemistry, 83, 526-534.
---------- CHICAGO ----------
Chanquia, S.N., Larregui, F., Puente, V., Labriola, C., Lombardo, E., García Liñares, G. "Synthesis and biological evaluation of new quinoline derivatives as antileishmanial and antitrypanosomal agents" . Bioorganic Chemistry 83 (2019) : 526-534.
---------- MLA ----------
Chanquia, S.N., Larregui, F., Puente, V., Labriola, C., Lombardo, E., García Liñares, G. "Synthesis and biological evaluation of new quinoline derivatives as antileishmanial and antitrypanosomal agents" . Bioorganic Chemistry, vol. 83, 2019, pp. 526-534.
---------- VANCOUVER ----------
Chanquia, S.N., Larregui, F., Puente, V., Labriola, C., Lombardo, E., García Liñares, G. Synthesis and biological evaluation of new quinoline derivatives as antileishmanial and antitrypanosomal agents. Bioorg. Chem. 2019;83:526-534.