Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In the present paper we develop and test a characteristic-based boundary condition (BC) scheme for the compressible magnetohydrodynamic equations, as the extension of a characteristic gasdynamics BC model. We use a Harten-Yee finite volume scheme for the spatial discretization of the domain, and a TVD Backward Euler time integrator for the sake of robustness. First we verify that the scheme works correctly for gasdynamic initial conditions (i.e., when B= 0), comparing with both analytical and experimental data. We then test the BC scheme with the Brio and Wu shock tube for two different types of boundaries: an open end and solid walls. We present a comparison between results obtained with the zeroth-order extrapolated BC scheme and the characteristic scheme developed. For a solid wall condition, we found discrepancies between both schemes when perturbations in the transverse magnetic field component (By) reach the boundaries. Also for the open end condition some discrepancies appear between the characteristic and extrapolated schemes, presenting the latter some instabilities. The results obtained with the characteristic scheme are smoother but presented a different wave pattern, which we believe is physical. © 2016 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Characteristic boundary conditions for magnetohydrodynamics: The Brio-Wu shock tube
Autor:Cimino, A.; Krause, G.; Elaskar, S.; Costa, A.
Filiación:Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Instituto de Astronomía Teórica y Experimental (IATE-CONICET), Laprida 854, Córdoba, Argentina
Palabras clave:Boundary conditions; Finite volume; Harten-Yee; MHD; Extrapolation; Finite volume method; Gas dynamics; Magnetohydrodynamics; Shock tubes; Characteristic boundary conditions; Compressible magnetohydrodynamic equations; Finite volume schemes; Harten-Yee; Initial conditions; Spatial discretizations; Time integrators; Transverse magnetic field; Boundary conditions
Año:2016
Volumen:127
Página de inicio:194
Página de fin:210
DOI: http://dx.doi.org/10.1016/j.compfluid.2016.01.001
Título revista:Computers and Fluids
Título revista abreviado:Comput. Fluids
ISSN:00457930
CODEN:CPFLB
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00457930_v127_n_p194_Cimino

Referencias:

  • Hedstrom, G.W., Nonreflecting boundary conditions for nonlinear hyperbolic systems (1979) J Comput Phys, 30 (2), pp. 222-237
  • Colonius, T., Modeling artificial boundary conditions for compressible flow (2004) Annu Rev Fluid Mech, 36, pp. 315-345
  • Poinsot, T.J., Lele, S.K., Boundary conditions for direct simulations of compressible viscous flows (1992) J Comput Phys, 101 (1), pp. 104-129
  • Thompson, K.W., Time dependent boundary conditions for hyperbolic systems (1987) J Comput Phys, 68, pp. 1-24
  • Sutherland, J.C., Kennedy, C.A., Improved boundary conditions for viscous, reacting, compressible flows (2003) J Comput Phys, 191 (2), pp. 502-524
  • Aschwanden, M.J., (2004) Physics of the solar corona, , Springer-Verlag
  • Dedner, A., Krner, D., Sofronov, I.L., Wesemberg, M., Transparent boundary conditions for MHD simulations in stratified atmospheres (2001) J Comput Phys, 171 (1), pp. 448-478
  • Hayashi, K., Magnetohydrodynamic simulations of the solar corona and solar wind using a boundary treatment to limit the solar wind mass flux (2005) Astrophys J Suppl Ser, 161, pp. 480-494
  • Thompson, K.W., Time dependent boundary conditions for hyperbolic systems, II (1990) J Comput Phys, 89 (2), pp. 439-461
  • Goedbloed, J., Poedts, S., (2004) Introduction to Magnetohydrodynamics, , Cambridge University Press
  • Jeffrey, A., Taniuti, T., (1964) Non-linear wave propagation, , Academic Press
  • Roe, P.L., Balsara, D.S., Notes on the eigensystem of magnetohydrodynamics (1996) SIAM J Appl Math, 56 (1), pp. 57-69
  • Toro, E.F., (2009) Riemann solvers and numerical methods for fluid dynamics: a practical introduction, , Springer, Berlin, Heidelberg
  • Harten, A., Hyman, J.M., Self adjusting grid methods for one-dimensional hyperbolic conservation laws (1983) J Comput Phys, 50 (2), pp. 235-269
  • Yee, H.C., A class of high-resolution explicit and implicit shock-capturing methods (1989) Technical report, NASA technical memorandum 101088
  • Falcinelli, O., Elaskar, S., Tamagno, J., Reducing the numerical viscosity in nonstructured three-dimensional finite volumes computations (2008) J Spacecraft Rockets, 45, pp. 406-408
  • Cargo, P., Gallice, G., Roe matrices for ideal MHD and systematic construction of Roe matrices for systems of conservation laws (1997) J Comput Phys, 136 (2), pp. 446-466
  • Yee, H., Warming, R., Harten, A., Implicit total variation diminishing (TVD) schemes for steady-state calculations (1985) J Comput Phys, 57 (3), pp. 327-360
  • Cimino, A., Elaskar, S., Costa, A., Tamagno, J., Applications of boundary conditions based on characteristics for gas dynamic flows with source terms, submitted (2015) Int J Comput Methods
  • Kim, J.W., Lee, D.J., Generalized characteristic boundary conditions for computational aeroacoustics, Part 2 (2004) AIAA J, 42, pp. 47-55
  • Brio, M., Wu, C.C., An upwind differencing scheme for the equations of ideal magnetohydrodynamics (1988) J Comput Phys, 75 (2), pp. 400-422
  • Knoll, D.A., Keyes, D.E., Jacobian-free Newton-Krylov methods: a survey of approaches and applications (2004) J Comput Phys, 193 (2), pp. 357-397
  • Sod, G.H., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws (1978) J Comput Phys, 27 (1), pp. 1-31
  • Rudinger, G., On the reflection of shock waves from an open end of a duct (1955) J Appl Phys, 26 (8), pp. 981-993
  • Tamagno, J., Slutski, S., Experimental results on supersonic combustion (1969) Technical report, AFOSR TR 069-0184, , Air Force Office for Scientific Research
  • Tamagno, J., (2015) Personal communication
  • Goedbloed, J., Poedts, S., (2004) Advanced magnetohydrodynamics. With applications to laboratory and astrophysical plasmas, , Cambridge University Press
  • Cimino, A., (2015) Condiciones de contorno basadas en características para las ecuaciones gasdinámicas y magnetohidrodinámicas. Aplicación a la dinámica de los arcos de la corona solar (in Spanish), , Universidad Nacional de Córdoba, [Ph.D. thesis]

Citas:

---------- APA ----------
Cimino, A., Krause, G., Elaskar, S. & Costa, A. (2016) . Characteristic boundary conditions for magnetohydrodynamics: The Brio-Wu shock tube. Computers and Fluids, 127, 194-210.
http://dx.doi.org/10.1016/j.compfluid.2016.01.001
---------- CHICAGO ----------
Cimino, A., Krause, G., Elaskar, S., Costa, A. "Characteristic boundary conditions for magnetohydrodynamics: The Brio-Wu shock tube" . Computers and Fluids 127 (2016) : 194-210.
http://dx.doi.org/10.1016/j.compfluid.2016.01.001
---------- MLA ----------
Cimino, A., Krause, G., Elaskar, S., Costa, A. "Characteristic boundary conditions for magnetohydrodynamics: The Brio-Wu shock tube" . Computers and Fluids, vol. 127, 2016, pp. 194-210.
http://dx.doi.org/10.1016/j.compfluid.2016.01.001
---------- VANCOUVER ----------
Cimino, A., Krause, G., Elaskar, S., Costa, A. Characteristic boundary conditions for magnetohydrodynamics: The Brio-Wu shock tube. Comput. Fluids. 2016;127:194-210.
http://dx.doi.org/10.1016/j.compfluid.2016.01.001