Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cover crops (CC) provide many benefits to soils but their effect on decomposition of previous crop residues and release of nutrients in continuous no-tillage soybean [Glycine max (L.) Merr.] production are little known. Our objective was to quantify CC effects on decomposition and phosphorus (P) release from soybean residue using litterbags. Three CC species (oat, Avena sativa L.; rye, Secale cereal L.; and rye grass, Lolium multiflorum L.) and a no CC control were evaluated. Temperature, moisture content, microbial biomass and microbial activity were measured in the surface 2cm of soil and residues. Cover crops increased soybean residue decomposition slightly both years (8.2 and 6.4%). Phosphorus release from soybean residue did not show any significant differences. Cover crops increased microbial biomass quantity and activity in both soil and residue samples (p<0.001, p=0.049 for soil and residue microbial biomass; p=0.060, p=0.003 for soil and residue microbial activity, respectively). Increased residue decomposition with CC was associated with higher soil and residue microbial biomass and activity, higher near-surface (0-2cm) moisture content (due to shading) and soil organic carbon enrichment by CC. Even though CC increased soybean residue decomposition (233kgha-1), this effect was compensated for by the annual addition of approximately 6500kgha-1 of CC biomass. This study demonstrated another role for CC when calibrating models that simulate the decomposition of residues in no-tillage systems. © 2014 Published by Elsevier B.V.

Registro:

Documento: Artículo
Título:Cover crop effects on soybean residue decomposition and P release in no-tillage systems of Argentina
Autor:Varela, M.F.; Scianca, C.M.; Taboada, M.A.; Rubio, G.
Filiación:Catedra de Fertilidad y Fertilizantes, School of Agriculture, INBA-CONICET, University of Buenos Aires, Av. San Martín 4453, 1417 Ciudad Autónoma de Buenos Aires, Argentina
Estación Experimental Agropecuaria General Villegas, Instituto Nacional de Tecnología Agropecuaria, Ruta Nacional 188, Km 339, 6230 Provincia de Buenos Aires, Argentina
Instituto de Suelos, Centro de Investigación de Recursos Naturales, Nicolas Repetto y de los Reseros s/n, 1686 Hurlingham, Provincia de Buenos Aires, Argentina
Palabras clave:Nutrient cycling; Phosphorus; Soil organic carbon; Soybean residues; Agricultural wastes; Amino acids; Biomass; Crops; Moisture determination; Nitrogen fixation; Nutrients; Phosphorus; Plants (botany); Microbial activities; No-tillage systems; Nutrient cycling; Phosphorus release; Residue decomposition; Soil organic carbon; Soybean residues; Soybean [glycine max (l.) merr.]; Soils; cover crop; crop production; decomposition; soybean; zero tillage; Argentina
Año:2014
Volumen:143
Página de inicio:59
Página de fin:66
DOI: http://dx.doi.org/10.1016/j.still.2014.05.005
Título revista:Soil and Tillage Research
Título revista abreviado:Soil Tillage Res.
ISSN:01671987
CODEN:SOTRD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01671987_v143_n_p59_Varela

Referencias:

  • Adams, G., Duncan, H., Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils (2001) Soil Biol. Biochem., 33, pp. 943-951
  • Alvarez, R., Steinbach, H.S., Bono, A., An artificial neural network approach for predicting soil carbon budget in agroecosystems (2011) Soil Sci. Soc. Am. J., 75, pp. 965-975
  • Anderson, J.P.E., Domsch, K.H., A physiological method for the quantitative measurement of microbial biomass in soils (1978) Soil Biol. Biochem., 10, pp. 215-221
  • Beare, M.H., Wilson, P.E., Fraser, P.M., Butler, R.C., Management effects on barley straw decomposition, nitrogen release, and crop production (2002) Soil Sci. Soc. Am. J., 66, pp. 848-856
  • Bhupinderpal-Singh, Rengel, Z., Bowden, J.W., Carbon, nitrogen and sulphur cycling following incorporation of canola residue of different sizes into a nutrient-poor sandy soil (2006) Soil Biol. Biochem., 38, pp. 1591-1597
  • Blanco-Canqui, H., Crop residue removal for bioenergy reduces soil carbon pools: how canweoffset carbon losses? (2013) Bioenerg. Res., 6, pp. 358-371
  • Bottner, P., Pansu, M., Sallih, Z., Modelling the effect of active roots on soil organic matter turnover (1999) Plant Soil, 216, pp. 15-25
  • Christensen, B.T., Wheat and barley straw decomposition under field conditions: effect of soil type and plant cover on weight loss, nitrogen and potassium content (1985) Soil Biol. Biochem., 17, pp. 93-97
  • Ciampitti, I.A., Piccone, L.E., Garcia, F.O., Rubio, G., Phosphorus budget and soil extractable dynamics in field crop rotations in Mollisols (2011) Soil Sci. Soc. Am. J., 75, pp. 131-142
  • Coppens, F., Garnier, P., Findeling, A., Merckx, R., Recous, S., Decomposition of mulched versus incorporated crop residues: modelling with PASTIS clarifies interactions between residue quality and location (2007) Soil Biol. Biochem., 39, pp. 2339-2350
  • Curtin, D., Francis, G.S., Decomposition rate of cereal straw as affected by soil placement (2008) Soil Res., 46, pp. 152-160
  • Derpsch, R., Friedrich, T., Kassam, A., Hongwen, L., Current status of adoption of no-till farming in the world and some of its main benefits (2010) Int. J. Agric. Biol. Eng., 3, pp. 1-25
  • Douglas, C.L., Allmaras, R.R., Rasmussen, P.E., Ramig, R.E., Roager, N.C., Wheat straw composition and placement effects on decomposition in dryland agriculture of the Pacific Northwest (1980) Soil Sci. Soc. Am. J., 44, pp. 833-837
  • Douglas, C.L., Rickman, R.W., Estimating crop residue decomposition from air temperature, initial nitrogen content and residue placement (1992) Soil Sci. Soc. Am. J., 56, pp. 272-278
  • Erenstein, O., Smallholder conservation farming in the tropics and sub-tropics: a guide to the development and dissemination of mulching with crop residues and cover crops (2003) Agric. Ecosyst. Environ., 100, pp. 17-37
  • Fernández, M.C., Belinque, H., Gutierrez Boem, F.H., Rubio, G., Compared phosphorus efficiency in soybean, sunflower and maize (2009) J. Plant Nutr., 32, pp. 2027-2043
  • Findeling, A., Garnier, P., Coppens, F., Lafolie, F., Recous, S., Modelling water, carbon and nitrogen dynamics in soil covered with decomposing mulch (2007) Eur. J. Soil Sci., 58, pp. 196-206
  • Friesen, D.K., Blair, G.J., A dual radiotracer study of transformations of organic, inorganic and plant residue phosphorus in soil in the presence and absence of plants (1988) Soil Res., 26, pp. 355-366
  • Fuller, W.H., Nielsen, D.R., Miller, R.W., Some factors influencing the utilization of phosphorus from crop residues (1956) Soil Sci. Soc. Am. J., 20, pp. 218-224
  • Goering, H.K., Van Soest, P.J., Forage fiber analysis (apparatus, reagents, procedures, and some applications) (1970) ARS Agriculture Handbook No. 379, , ARS-USDA, Washington, DC
  • Guérif, J., Richard, G., Dürr, C., Machet, J., A review of tillage effects on crop residue management, seedbed conditions and seedling establishment (2001) Soil Tillage Res., 61, pp. 13-32
  • Haider, K., Heinemeyer, O., Mosier, A.R., Effects of growing plants on humus and plant residue decomposition in soil; uptake of decomposition products by plants (1989) Sci. Total Environ., pp. 661-670
  • Iyamuremye, F., Dick, R.P., Organic amendments and phosphorus sorption by soils (1996) Adv. Agron., 56, pp. 139-185
  • Jalali, M., Ranjbar, F., Rates of decomposition and phosphorus release from organic residues related to residue composition (2009) J. Plant Nutr. Soil Sci., 172, pp. 353-359
  • Jannoura, R., Kleikamp, B., Dyckmans, J., Joergensen, R.G., Impact of pea growth and arbuscular mycorrhizal fungi on the decomposition of 15 N-labeled maize residues (2012) Biol. Fertil. Soils, 48, pp. 547-560
  • Janzen, H.H., Radder, G.D., Nitrogen mineralization in a green manure-amended soil as influenced by cropping history and subsequent crop (1989) Plant Soil, 120, pp. 125-131
  • Jones, O.L., Bromfields, M.S., Phosphorus changes during the leaching and decomposition of hayed-off pasture plants (1969) Aust. J. Agric. Res., 20, pp. 653-663
  • Kwabiah, A.B., Stoskopf, N.C., Palm, C.A., Voroney, R.P., Soil P availability as affected by the chemical composition of plant materials: implications for P-limiting agriculture in tropical Africa (2003) Agric. Ecosyst. Environ, 100, pp. 53-61
  • Lal, R., World crop residues production and implications of its use as a biofuel (2005) Environ. Int., 31, pp. 575-584
  • Lal, R., Reicosky, D.C., Hanson, J.D., Evolution of the plow over 10,000 years and the rationale for no-till farming (2007) Soil Tillage Res., 93, pp. 1-12
  • Lupwayi, N.Z., Clayton, G.W., ÓDonovan, J.T., Harker, K.N., Turkington, T.K., Soon, Y.K., Phosphorus release during decomposition of crop residues under conventional and zero tillage (2007) Soil Tillage Res., 95, pp. 231-239
  • Mead, R., Curnow, R.N., Hasted, A.M., (1993) Statistical Methods in Agriculture and Experimental Biology, , Chapman & Hall, London
  • Muhammad, S., Müller, T., Mayer, J., Joergensen, R.G., Impact of growing maize (Zea mays) on the decomposition of incorporated fresh alfalfa residues (2007) Biol. Fertil. Soils, 43, pp. 399-407
  • Murphy, J., Riley, J.P., A modified single solution method for the determination of phosphate in natural waters (1962) Anal. Chim. Acta, 27, pp. 31-36
  • Nachimuthu, G., Guppy, C., Kristiansen, P., Lockwood, P., Isotopic tracing of phosphorus uptake in corn from 33P labeled legume residues and 32P labeled fertilisers applied to a sandy loamsoil (2009) Plant Soil, 314, pp. 303-310
  • Nicolardot, B., Denys, D., Lagacherie, B., Cheneby, D., Mariotti, M., Decomposition of 15N-labelled catch-crop residues in soil: evaluation of N mineralization and plant-uptake potentials under controlled conditions (1995) Eur. J. Soil Sci, 46, pp. 115-123
  • Noack, S.R., McLaughlin, M.J., Smernik, R.J., McBeath, T.M., Armstrong, R.D., Crop residue phosphorus: speciation and potential bio-availability (2012) Plant Soil, 359, pp. 375-385
  • Novelli, L.E., Caviglia, O.P., Melchiori, R.J.M., Impact of soybean cropping frequency on soil carbon storage in Mollisols and Vertisols (2011) Geoderma, pp. 254-260
  • Paré, T., Gregorich, E.G., Nelson, S.D., Mineralization of nitrogen from crop residues and N recovery by maize inoculated with vesicular-arbuscular mycorrhizal fungi (2000) Plant Soil, 218, pp. 11-20
  • Parr, J.F., Papendick, R.I., Factors affecting the decomposition of crop residues by microorganisms (1978) Crop Residue Management Systems, pp. 101-129. , ASA, Madison, W.R. Oschwald (Ed.)
  • Reid, J.B., Goss, M.J., Suppression of decomposition of 14Clabelled plant roots in the presence of living roots of maize and perennial ryegrass (1982) J. Soil Sci., 33, pp. 387-395
  • Ruffo, M.L., Bollero, G.A., Modeling rye and hairy vetch residue decomposition as a function of degree-days and decomposition-days (2003) Agron. J., 95, pp. 900-907
  • Schabenberger, O., Pierce, F.J., (2002) Contemporary Statistical Models for the Plant and Soil Science, , CRC, Boca Raton
  • Schnürer, J., Rosswall, T., Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter (1982) Appl. Environ. Microbiol., 43 (6), pp. 1256-1261
  • Schomberg, H.H., Steiner, J.L., Nutrient dynamics of crop residues decomposing on a fallow no-till soil surface (1999) Soil Sci. Soc. Am. J., 63, pp. 607-613
  • Singh, B.B., Jones, J.P., Phosphorous sorption and desorption characteristics of soil as affected by organic residues (1976) Soil Sci. Soc. Am. J., 40, pp. 389-394
  • Soon, Y., Arshad, M., Comparison of the decomposition and N and P mineralization of canola, pea and wheat residues (2002) Biol. Fert. Soils, 36, pp. 10-17
  • Steiner, J.L., Schomberg, H.H., Unger, P.W., Cresap, J., Crop residue decomposition in no-tillage small-grain fields (1999) Soil Sci. Soc. Am. J., 63, pp. 1817-1824
  • Stroo, H.F., Bristow, K.L., Elliott, L.F., Papendick, R.I., Campbell, G.S., Predicting rates of wheat residue decomposition (1989) Soil Sci. Soc. Am. J., 53, pp. 91-99
  • Thorburn, P.J., Probert, M.E., Robertson, F.A., Modelling decomposition of sugarcane surface residues with APSIM-Residue (2001) Field Crops Res., 70, pp. 223-232
  • Varela, M.F., Fernandez, P.L., Rubio, G., Taboada, M.A., Cover crops: effects on soil macroporosity and soil structural stability in a silt loam soil (2011) Ciencia del suelo, 29, pp. 99-106
  • Verhoef, H.A., Litterbag method (1995) Methods in Applied Soil Microbiology and Biochemistry, pp. 485-487. , Academic Press, London, K. Alef, K. Nannipieri (Eds.)
  • Villamil, M.B., Bollero, G.A., Darmody, R.G., Simmons, F.W., Bullock, D.G., No-till corn/soybean systems including winter cover crops (2006) Soil Sci. Soc. Am. J., 70, pp. 1936-1944
  • White, R.E., Ayoub, A.T., Decomposition of plant residues of variable C/P ratio and the effect on soil phosphate availability (1983) Plant Soil, 74, pp. 163-173
  • Yadvinder-Singh, Gupta, R.K., Jagmohan-Singh, Gurpreet-Singh, Gobinder-Singh, Ladha, J.K., Placement effects on rice residue decomposition and nutrient dynamics on two soil types during wheat cropping in rice-wheat system in northwestern India (2010) Nutr. Cycl. Agroecosyst., 88, pp. 471-480

Citas:

---------- APA ----------
Varela, M.F., Scianca, C.M., Taboada, M.A. & Rubio, G. (2014) . Cover crop effects on soybean residue decomposition and P release in no-tillage systems of Argentina. Soil and Tillage Research, 143, 59-66.
http://dx.doi.org/10.1016/j.still.2014.05.005
---------- CHICAGO ----------
Varela, M.F., Scianca, C.M., Taboada, M.A., Rubio, G. "Cover crop effects on soybean residue decomposition and P release in no-tillage systems of Argentina" . Soil and Tillage Research 143 (2014) : 59-66.
http://dx.doi.org/10.1016/j.still.2014.05.005
---------- MLA ----------
Varela, M.F., Scianca, C.M., Taboada, M.A., Rubio, G. "Cover crop effects on soybean residue decomposition and P release in no-tillage systems of Argentina" . Soil and Tillage Research, vol. 143, 2014, pp. 59-66.
http://dx.doi.org/10.1016/j.still.2014.05.005
---------- VANCOUVER ----------
Varela, M.F., Scianca, C.M., Taboada, M.A., Rubio, G. Cover crop effects on soybean residue decomposition and P release in no-tillage systems of Argentina. Soil Tillage Res. 2014;143:59-66.
http://dx.doi.org/10.1016/j.still.2014.05.005