Artículo

Marrero, H.J.; Torretta, J.P.; Vázquez, D.P.; Hodara, K.; Medan, D. "Exotic plants promote pollination niche overlap in an agroecosystem" (2017) Agriculture, Ecosystems and Environment. 239:304-309
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Agricultural land management modifies ecosystem structure and functioning in natural landscapes. Pollinators are a key functional group that may suffer from such intensification. Here we evaluate how agricultural land management influences the diversity of pollen transported by pollinators and the pollination niche overlap among plants. We described pollen transport networks (which allow assessing the contribution of pollinators to the flow of pollen among plants) in agricultural and restored fragments in three sites representative of the pampas region of Argentina. We analyzed diversity of pollen transported by pollinators and the pollination niche overlap among plants in both types of fragments with general and generalized linear mixed models. The agricultural fragments were associated to increased diversity of transported pollen and pollination niche overlap among plants. Greater pollination niche overlap in agricultural fragments was associated with increased abundance of exotic plants. Our results indicate that agricultural intensification has significantly increased the diversity of pollen and the pollination niche overlap in natural communities by promoting exotic plants and generalized plant-pollinator interactions. Strategies to encourage improvements in the quality of pollination in agroecosystems could range from controlling the levels of exotic species to mechanisms that promote increased diversity of native plants. © 2017 Elsevier B.V.

Registro:

Documento: Artículo
Título:Exotic plants promote pollination niche overlap in an agroecosystem
Autor:Marrero, H.J.; Torretta, J.P.; Vázquez, D.P.; Hodara, K.; Medan, D.
Filiación:Instituto Argentino de Investigaciones de las Zonas Áridas, Conicet, CC 507, Mendoza, Argentina
Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Botánica General, Conicet, Av. San Martín 4453, Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, Argentina
Palabras clave:Ecosystem service; Flower visitor; Land use intensification; Plant niche overlap; Pollen transport networks; Pollination service
Año:2017
Volumen:239
Página de inicio:304
Página de fin:309
DOI: http://dx.doi.org/10.1016/j.agee.2017.01.027
Título revista:Agriculture, Ecosystems and Environment
Título revista abreviado:Agric. Ecosyst. Environ.
ISSN:01678809
CODEN:AEEND
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_01678809_v239_n_p304_Marrero

Referencias:

  • Aizen, M.A., Morales, C.L., Morales, J.M., Invasive mutualists erode native pollination webs (2008) PLoS Biol., 6, p. e31
  • Arceo-Gómez, G., Ashman, T.L., Heterospecific pollen deposition: does diversity alter the consequences? (2011) New Phytol., 192, pp. 738-746
  • Arceo-Gómez, G., Ashman, T.L., Heterospecific pollen receipt affects self pollen more than outcross pollen: implications for mixed-mating plants (2011) Ecology, 95, pp. 2946-2952
  • Arceo-Gómez, G., Ashman, T.L., Invasion status and phylogenetic relatedness predict cost of heterospecific pollen receipt: implications for native biodiversity decline (2016) J. Ecol., 104, pp. 1003-1008
  • Ashman, T.L., Arceo-Gómez, G., Toward a predictive understanding of the fitness costs of heterospecific pollen receipt and its importance in co-flowering communities (2013) Am. J. Bot., 100, pp. 1061-1070
  • Beekman, M., Ratnieks, F.L.W., Long-range foraging by the honey-bee, Apis mellifera L (2000) Funct. Ecol., 14, pp. 490-496
  • Bjerknes, A.L., Totland, Ø., Hegland, S.J., Nielsen, A., Do alien plant invasions really affect pollination success in native plant species? (2007) Biol. Conserv., 138, pp. 1-12
  • Bolnick, D.I., Ingram, T., Stutz, W.E., Snowberg, L.K., Lau, O.L., Paull, J.S., Ecological release from interspecific competition leads to decoupled changes in population and individual niche width (2010) Proc. R. Soc. B, 277, pp. 1789-1797
  • Bosch, J., Martín González, A.M., Anselm, R., Navarro, D., Plant-pollinator networks: adding the pollinator's perspective (2009) Ecol. Lett., 12, pp. 409-419
  • Brosi, B.J., Briggs, H.M., Single pollinator species losses reduce floral fidelity and plant reproductive function (2013) Proc. Natl. Acad. Sci. U. S. A., 110, pp. 13044-13048
  • Carreck, N.L., Williams, I.H., Food for insect pollinators on farmland: insect visits to flowers of annual seed mixtures (2002) J. Insect Conserv., 6, pp. 13-23
  • Carvell, C., Meek, W.R., Pywell, R.F., Goulson, D., Nowakowski, M., Comparing the efficacy of agri-environment schemes to enhance bumble bee abundance and diversity on arable field margins (2007) J. Appl. Ecol., 44, pp. 29-40
  • Chittka, L., Schürkens, S., Successful invasion of a floral market—an exotic Asian plant has moved in on Europe's river-banks by bribing pollinators (2001) Nature, 411, p. 653
  • Dormann, C.F., Fruend, J., Bluethgen, N., Gruber, B., Indices, graphs and null models: analyzing bipartite ecological networks (2009) Open Ecol. J., 2, pp. 7-24
  • Ellis, E.C., Goldewijk, K.K., Siebert, S., Lightman, D., Ramankutty, N., Anthropogenic transformation of the biomes, 1700 to 2000 (2010) Global Ecol. Biogeogr., 19, pp. 589-606
  • Fang, Q., Huang, S.Q., A directed network analysis of heterospecific pollen transfer in a biodiverse community (2013) Ecology, 94, pp. 1176-1185
  • Fang, Q., Huang, S.Q., A paradoxical mismatch between interspecific pollinator moves and heterospecific pollen receipt in a natural community (2016) Ecology, 97, pp. 1970-1978
  • Feinsinger, P., Effects of plant species on each other's pollination: is community structure influenced? (1987) Trends Ecol. Evol., 2, pp. 123-126
  • Fischer, J., Lindenmayer, D.V., Landscape modification and habitat fragmentation: a synthesis (2007) Global Ecol. Biogeogr., 16, pp. 265-280
  • Forup, M.L., Memmott, J., The restoration of plant-pollinator interactions in hay meadows (2005) Restor. Ecol., 13, pp. 265-274
  • Garibaldi, L.A., Steffan-Dewenter, I., Kremen, C., Morales, J.M., Bommarco, R., Cunningham, S.A., Carvalheiro, L.G., Klein, A.M., Stability of pollination services decreases with isolation from natural areas despite honey bee visits (2011) Ecol. Lett., 14, pp. 1062-1072
  • Garibaldi, L.A., Carvalheiro, L.G., Leonhardt, S.D., Aizen, M.A., Blaauw, B.R., Isaacs, R., Kuhlmann, M., Winfree, R., From research to action: enhancing crop yield through wild pollinators (2014) Front. Ecol. Environ., 12, pp. 439-447
  • Gibson, R.H., Nelson, I.L., Hopkins, G.W., Hamlett, B.J., Memmott, J., Pollinator webs, plant communities and the conservation of rare plants: arable weeds as a case study (2006) J. Appl. Ecol., 43, pp. 246-257
  • Gómez, J.M., Muñoz-Pajares, A.J., Abdelaziz, M., Lorite, J., Perfectti, F., Evolution of pollination niches and floral divergence in the generalist plant Erysimum mediohispanicum (2014) Ann. Bot., 113, pp. 237-249
  • González-Roglich, M., Southworth, J., Branch, L.C., The role of private lands for conservation: land cover change analysis in the Caldenal savanna ecosystem, Argentina (2012) Appl. Geogr., 34, pp. 281-288
  • Grass, I., Berens, D.G., Peter, F., Farwig, N., Additive effects of exotic plant abundance and land-use intensity on plant-pollinator interactions (2013) Oecologia, 173, pp. 913-923
  • Grass, I., Berens, D.G., Peter, F., Farwig, N., Natural habitat loss and exotic plants reduce the functional diversity of flower visitors in a heterogeneous subtropical landscape (2014) Funct. Ecol., 28, pp. 1117-1126
  • Haaland, C., Naisbit, R.E., Bersier, L.F., Sown wildflower strips for insect conservation: a review (2011) Insect Conser. Diver., 4, pp. 60-80
  • Hodara, K., Poggio, S.L., Frogs taste nice when there are few mice: do dietary shifts in barn owls result from rapid farming intensification? (2016) Agric. Ecosyst. Environ., 230, pp. 42-46
  • Horn, H.S., Measurement of overlap in comparative ecological studies (1966) Am. Nat., 100, pp. 419-423
  • Kearns, C.A., Inouye, D., Techniques for Pollination Biologists (1993), University Press of Colorado Denver 583 pp; Krebs, C.J., Ecological Methodology (1989), Harper and Row Publishers New York 654 pp; Kremen, C., M'Gonigle, L.K., Small-scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species (2015) J. Appl. Ecol., 52, pp. 602-610
  • Kremen, C., Williams, N.M., Aizen, M.A., Gemmill-Herren, B., LeBuhn, G., Minckley, R., Packer, L., Ricketts, T.H., Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change (2007) Ecol. Lett., 10, pp. 299-314
  • Larson, D.L., Royer, R.A., Royer, M.R., Insect visitation and pollen deposition in an invaded prairie plant community (2006) Biol. Conserv., 130, pp. 148-159
  • Lopezaraiza-Mikel, M.E., Hayes, R.B., Whalley, M.R., Memmott, J., The impact of an alien plant on a native plant-pollinator network: an experimental approach (2007) Ecol. Lett., 10, pp. 539-550
  • Marrero, H.J., Torretta, J.P., Medan, D., Effect of land use intensification on specialization in plant-floral visitor interaction networks in the Pampas of Argentina (2014) Agric. Ecosyst. Environ., 188, pp. 63-71
  • Marrero, H.J., Medan, D., Zarlavsky, G.E., Torretta, J.P., Agricultural land management negatively affects pollination service in Pampean agro-ecosystems (2016) Agric. Ecosyst. Environ., 218, pp. 28-32
  • Medan, D., Torretta, J.P., Hodara, K., de la Fuente, E.B., Montaldo, N.H., Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina (2011) Biodivers. Conserv., 20, pp. 3077-3100
  • Memmott, J., The structure of a plant-pollinator food web (1999) Ecol. Lett., 2, pp. 276-280
  • Mitchell, R.J., Flanagan, J.J., Brown, B.J., Waser, N.M., Karron, J.D., New frontiers in competition for pollination (2009) Ann. Bot., 103, pp. 1403-1413
  • Montero-Castaño, A., Vilà, M., Impact of landscape alteration and invasions on pollinators: a meta-analysis (2012) J. Ecol., 100, pp. 884-893
  • Montero-Castaño, A., Ortiz-Sánchez, F.J., Vilà, M., Mass flowering crops in a patchy agricultural landscape can reduce bee abundance in adjacent shrublands (2016) Agric. Ecosyst. Environ., 223, pp. 22-30
  • Montgomery, B.R., Rathcke, B.J., Effects of floral restrictiveness and stigma size on heterospecific pollen receipt in a prairie community (2012) Oecologia, 168, pp. 449-458
  • Morales, C.L., Traveset, A., Interspecific pollen transfer: magnitude, prevalence and consequences for plant fitness (2008) Crit. Rev. Plant Sci., 27, pp. 221-238
  • Morales, C.L., Traveset, A., A meta-analysis of impacts of alien vs. native plants on pollinator visitation and reproductive success of co-flowering native plants (2009) Ecol. Lett., 12, pp. 716-728
  • Muñoz, A.A., Cavieres, L.A., The presence of a showy invasive plant disrupts pollinator service and reproductive output in native alpine species only at high densities (2008) J. Ecol., 96, pp. 459-467
  • Nicholls, C.I., Altieri, M.A., Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review (2013) Agron. Sustain. Dev., 33, pp. 257-274
  • Olson, D.M., Wäckers, F.L., Management of field margins to maximize multiple ecological services (2007) J. Appl. Ecol., 44, pp. 13-21
  • R Development Core Team, R: A Language and Environment for Statistical Computing (2013), http://www.R-project.org/, R Foundation for Statistical Computing Vienna, Austria Available at:; Rader, R., Edwards, W., Westcott, D.A., Cunningham, S.A., Howlett, B.G., Pollen transport differs among bees and flies in a human-modified landscape (2011) Divers. Distrib., 17, pp. 519-529
  • Santos, G.M.M., Aguiar, C.M.L., Genini, J., Martins, C.F., Zanella, F.C.V., Mello, M.A.R., Invasive africanized honeybees change the structure of native pollination networks in Brazil (2012) Biol. Invasions, 14, pp. 2369-2378
  • Stout, J.C., Morales, C.L., Ecological impacts of invasive alien species on bees (2009) Apidologie, 40, pp. 388-409
  • Torretta, J.P., Poggio, S.L., Species diversity of entomophilous plants and flower-visiting insects is sustained in the field margins of sunflower crops (2013) J. Nat. Hist., 47, pp. 139-165
  • Traveset, A., Richardson, D.M., Mutualistic interactions and biological invasions (2014) Annu. Rev. Ecol. Evol. Syst., 45, pp. 89-113
  • Tylianakis, J.M., Understanding the web of life: the birds, the bees, and sex with aliens (2008) PLoS Biol., 6, pp. 224-228
  • Vázquez, D.P., Simberloff, D., Ecological specialization and susceptibility to disturbance: conjectures and refutations (2002) Am. Nat., 159, pp. 606-623
  • Vázquez, D.P., Exploring the relationship between niche breadth and invasion success (2006) Conceptual Ecology and Invasions Biology, pp. 317-332. , M.W. Cadotte S.M. McMahon T. Fukami Springer New York
  • Vanbergen, A.J., Landscape alteration and habitat modification: impacts on plant-pollinator systems (2014) Curr. Opin. Insect Sci., 4, pp. 1-6
  • Vilà, M., Bartomeus, I., Dietzsch, A.C., Petanidou, T., Steffan-Dewenter, I., Stout, J., Tscheulin, T., Invasive plant integration into native plant–pollinator networks across Europe (2009) Proc. R. Soc. B, 276, pp. 3887-3893
  • Weiner, C.N., Werner, M., Linsenmair, K.E., Blüthgen, N., Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines (2014) Ecology, 95, pp. 466-474
  • Zurbuchen, A., Landert, L., Klaiber, J., Müller, A., Hein, S., Dorn, S., Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances (2010) Biol. Conserv., 143, pp. 669-676

Citas:

---------- APA ----------
Marrero, H.J., Torretta, J.P., Vázquez, D.P., Hodara, K. & Medan, D. (2017) . Exotic plants promote pollination niche overlap in an agroecosystem. Agriculture, Ecosystems and Environment, 239, 304-309.
http://dx.doi.org/10.1016/j.agee.2017.01.027
---------- CHICAGO ----------
Marrero, H.J., Torretta, J.P., Vázquez, D.P., Hodara, K., Medan, D. "Exotic plants promote pollination niche overlap in an agroecosystem" . Agriculture, Ecosystems and Environment 239 (2017) : 304-309.
http://dx.doi.org/10.1016/j.agee.2017.01.027
---------- MLA ----------
Marrero, H.J., Torretta, J.P., Vázquez, D.P., Hodara, K., Medan, D. "Exotic plants promote pollination niche overlap in an agroecosystem" . Agriculture, Ecosystems and Environment, vol. 239, 2017, pp. 304-309.
http://dx.doi.org/10.1016/j.agee.2017.01.027
---------- VANCOUVER ----------
Marrero, H.J., Torretta, J.P., Vázquez, D.P., Hodara, K., Medan, D. Exotic plants promote pollination niche overlap in an agroecosystem. Agric. Ecosyst. Environ. 2017;239:304-309.
http://dx.doi.org/10.1016/j.agee.2017.01.027