Artículo

Rivero, M.; Furman, N.; Mencacci, N.; Picca, P.; Toum, L.; Lentz, E.; Bravo-Almonacid, F.; Mentaberry, A. "Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens" (2012) Journal of Biotechnology. 157(2):334-343
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Solanum tuberosum plants were transformed with three genetic constructions expressing the Nicotiana tabacum AP24 osmotine, Phyllomedusa sauvagii dermaseptin and Gallus gallus lysozyme, and with a double-transgene construction expressing the AP24 and lysozyme sequences. Re-transformation of dermaseptin-transformed plants with the AP24/lysozyme construction allowed selection of plants simultaneously expressing the three transgenes. Potato lines expressing individual transgenes or double- and triple-transgene combinations were assayed for resistance to Erwinia carotovora using whole-plant and tuber infection assays. Resistance levels for both infection tests compared consistently for most potato lines and allowed selection of highly resistant phenotypes. Higher resistance levels were found in lines carrying the dermaseptin and lysozyme sequences, indicating that theses proteins are the major contributors to antibacterial activity. Similar results were obtained in tuber infection tests conducted with Streptomyces scabies. Plant lines showing the higher resistance to bacterial infections were challenged with Phytophthora infestans, Rhizoctonia solani and Fusarium solani. Considerable levels of resistance to each of these pathogens were evidenced employing semi-quantitative tests based in detached-leaf inoculation, fungal growth inhibition and in vitro plant inoculation. On the basis of these results, we propose that stacking of these transgenes is a promising approach to achieve resistance to both bacterial and fungal pathogens. © 2011 Elsevier B.V.

Registro:

Documento: Artículo
Título:Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens
Autor:Rivero, M.; Furman, N.; Mencacci, N.; Picca, P.; Toum, L.; Lentz, E.; Bravo-Almonacid, F.; Mentaberry, A.
Filiación:Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Av. Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
INGEBI-CONICET, Vuelta de Obligado 2490, C1428EGA, Buenos Aires, Argentina
Laboratorio de Sistemática de Plantas Vasculares, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Av. Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
Palabras clave:AP24 osmotine; Dermaseptin; Erwinia carotovora; Fusarium solani; Lysozyme; Phytophthora infestans; Potato; Resistance; Rhizoctonia solani; Streptomyces scabies; Transgenic; AP24 osmotine; Dermaseptin; Erwinia carotovora; Fusarium solani; Lysozyme; Phytophthora infestans; Potato; Rhizoctonia solani; Streptomyces scabies; Transgenics; Bacteria; Electric resistance; Enzymes; Fungi; Genes; dermaseptin; lysozyme; amino acid sequence; antibacterial activity; antibiotic resistance; antifungal resistance; article; bacterial gene; bacterial infection; chicken; controlled study; fowl; frog; fungus growth; Fusarium solani; gene expression; genetic transformation; growth inhibition; Hyphomycetes; in vitro study; inoculation; microbial genetics; nonhuman; nucleotide sequence; Pectobacterium carotovorum; phenotype; Phytophthora infestans; plant leaf; potato; priority journal; quantitative analysis; Streptomyces; tobacco; transgene; transgenic plant; Amphibian Proteins; Animals; Antimicrobial Cationic Peptides; Bacteria; Chickens; Fungi; Gene Expression Regulation, Plant; Muramidase; Pectobacterium carotovorum; Plant Diseases; Plant Proteins; Plants, Genetically Modified; Solanum tuberosum; Tobacco; Bacteria (microorganisms); Fusarium solani; Gallus gallus; Nicotiana tabacum; Pectobacterium carotovorum; Phyllomedusa sauvagei; Phytophthora infestans; Solanum tuberosum; Streptomyces scabiei; Thanatephorus cucumeris
Año:2012
Volumen:157
Número:2
Página de inicio:334
Página de fin:343
DOI: http://dx.doi.org/10.1016/j.jbiotec.2011.11.005
Título revista:Journal of Biotechnology
Título revista abreviado:J. Biotechnol.
ISSN:01681656
CODEN:JBITD
CAS:dermaseptin, 136212-91-4; lysozyme, 9001-63-2; Amphibian Proteins; Antimicrobial Cationic Peptides; Muramidase, 3.2.1.17; Plant Proteins; dermaseptin, 136212-91-4; osmotin protein, Nicotiana tabacum, 142583-51-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01681656_v157_n2_p334_Rivero

Referencias:

  • Abad, L.R., D'Urzo, M.P., Liu, D., Narasimhan, M.L., Reuveni, M., Zhu, J.K., Niu, X., Bressan, R.A., Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization (1996) Plant Sci., 118, pp. 11-23
  • Alan, A.R., Blowers, A., Earle, E.D., Expression of a magainin-type antimicrobial peptide gene (MSI-99) in tomato enhances resistance to bacterial speck disease (2004) Plant Cell Rep., 22, pp. 388-396
  • Arbogast, M., Powelson, M.L., Cappaert, M.R., Watrud, L.S., Response of six potato cultivars to amount of applied water and Verticillium dahliae (1999) Phytopathology, 89, pp. 782-788
  • Arce, P., Moreno, M., Gutierrez, M., Gebauer, M., Dell'Orto, P., Torres, H., Acuña, I., Holuigue, L., Enhanced resistance to bacterial infection by Erwinia carotovora subsp. atroseptica in transgenic potato plants expressing the attacin or the cecropin SB-37 genes (1999) Am. J. Potato Res., 76, pp. 169-177
  • Bradford, M.M., A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
  • Campbell, M.A., Fitzgerald, H.A., Ronald, P.C., Engineering pathogen resistance in crop plants (2002) Transgenic Res., 11, pp. 599-613
  • Chakrabarti, A., Ganapathi, T.R., Mukherjee, P.K., Bapat, V.A., MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana (2003) Planta, 216, pp. 587-596
  • Datta, K., Baisakh, N., Maung Thet, K., Tu, J., Datta, S., Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight (2002) Theor. Appl. Genet., 106, pp. 1-8
  • Dellaporta, S.L., Wood, J., Hicks, J.B., A plant DNA minipreparation: version II (1983) Plant Mol. Biol. Rep., 1, pp. 19-21
  • Douglas, R., Halpin, C., Gene stacking (2009) Molecular Techniques in Crop Improvement, pp. 613-629. , Springer, The Netherlands, S.M. Jain, D.S. Brar (Eds.)
  • Düring, K., Can lysozymes mediate antibacterial resistance in plants? (1993) Plant Mol. Biol., 23, pp. 209-214
  • Erwin, D.C., Ribeiro, O.K., (1996) Phytophthora Diseases Worldwide, , American Phytopathological Society Press, St Paul, NN, USA
  • Gao, H., Tao, S., Wang, D., Zhang, C., Ma, X., Cheng, J., Zhou, Y., Comparison of different methods for preparing single stranded DNA for oligonucleotide microarray (2003) Anal. Lett., 36, pp. 2849-2863
  • Gerlach, W., Nirenberg, H., The genus Fusarium: a pictorial atlas (1982) Mitt. Biol. Bundesanst. Land-Furstwirstsch. Berlin-Dahlen, 209, pp. 1-406
  • Halpin, C., Gene stacking in transgenic plants - the challenge for 21st century plant biotechnology (2005) Plant Biotechnol. J., 3, pp. 141-155
  • Hanke, V., Düring, K., Norelli, J.L., Aldwinckle, H.S., Transformation of apple cultivars with T4-lysozyme-gene to increase disease resistance (1999) Acta Hortic., 489, pp. 253-256
  • Herrmann, M., Zocher, R., Haese, A., Effect of disruption of the enniatin synthetase gene on the virulence of Fusarium avenaceum (1996) Mol. Plant Microbe Int., 9, pp. 226-232
  • Höltje, J.V., Lysozyme substrates (1996) Lysozymes: Model Enzymes in Biochemistry and Biology, pp. 105-110. , Birkhäuser Verlag, Basel-Boston-Berlin, P. Jollès (Ed.)
  • Jha, S., Chattoo, B.B., Transgene stacking and coordinated expression of plant defensins confer fungal resistance in rice (2009) Rice, 2, pp. 143-154
  • Kato, A., Nakamura, S., Ibrahim, H., Matsumi, T., Tsumiyama, C., Kato, M., Production of genetically modified lysozymes having extreme heat stability and antimicrobial activity against Gram negative bacteria in yeast and in plants (1998) Mol. Nutr. Food Res., 42, pp. 128-130
  • Keinath, A.P., Loria, R., Effects of inoculum density and cultivar resistance on common scab of potato and population dynamics of Streptomyces scabies (1991) Am. J. Potato Res., 68, pp. 515-524
  • Labruyere, R.E., (1971) Common Scab and Its Control in Seed-potato Crops, , Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands
  • Lapwood, D.H., Read, P.J., Spokes, J., Methods for assessing the susceptibility of potato tubers of different cultivars to rotting by Erwinia carotovora subspecies atroseptica and carotovora (1984) Plant Pathol., 33, pp. 13-20
  • Lebecka, R., Zimnoch-Guzowska, E., Lojkowska, E., Bacterial diseases (2006) Handbook of Potato Production, Improvement and Postharvest Management, pp. 359-386. , The Haworth Press, Binghamton, NY, USA, J. Gopal, S.M.P. Khurana (Eds.)
  • Lee, Y.P., Kim, S.H., Bang, J.W., Lee, H.S., Kwak, S.S., Kwon, S.Y., Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts (2007) Plant Cell Rep., 26, pp. 591-598
  • Liu, D., Raghothama, K.G., Hasegawa, P.M., Bressan, R.A., Osmotin overexpression in potato delays development of disease symptoms (1994) Proc. Natl. Acad. Sci. U. S. A., 91, pp. 1888-1892
  • López, A., Zaldúa, Z., Pimentel, E., García, M., García, R., Mena, J., Morán, R., Selman, G., Modificación del gen de la esporamina de boniato con un fragmento de AND sintético, Secuencia nucleotídica y expresión en Escherichia coli (1996) Biotecnol. Apl., 13, pp. 265-270
  • Melchers, L.S., Stuiver, M.H., Novel genes for disease-resistance breeding (2000) Curr. Opin. Plant Biol., 3, pp. 147-152
  • Mourgues, F., Brisset, M.N., Chevreau, E., Strategies to improve plant resistance to bacterial diseases through genetic engineering (1998) Trends Biotechnol., 16, pp. 203-210
  • Nakajima, H., Muranaka, T., Ishige, F., Akutsu, K., Oeda, K., Fungal and bacterial disease resistance in transgenic plants expressing human lysozyme (1997) Plant Cell Rep., 16, pp. 674-679
  • Osusky, M., Osuska, L., Kay, W., Misra, S., Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2 (2005) Theor. Appl. Genet., 111, pp. 711-722
  • Ouyang, B., Chen, Y.H., Li, H.X., Qian, C.J., Huang, S.L., Ye, Z.B., Transformation of tomatoes with osmotin and chitinase genes and their resistance to Fusarium wilt (2005) J. Hortic. Sci. Biotechnol., 80, pp. 517-522
  • Pérombelon, M.C.M., Potato diseases caused by soft rot erwinias: an overview of pathogenesis (2002) Plant Pathol., 51, pp. 1-12
  • Platt, H.W., Petters, R.D., Fungal and oomycete diseases (2006) Handbook of Potato Production, Improvement and Postharvest Management, pp. 315-358. , The Haworth Press, Binghamton, NY, USA, J. Gopal, S.M.P. Khurana (Eds.)
  • Qi, B., Fraser, T., Mugford, S., Dobson, G., Sayanova, O., Butler, J., Napier, J.A., Lazarus, C.M., Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants (2004) Nat. Biotechnol., 22, pp. 739-745
  • Roberts, W.K., Selitrennikoff, C.P., Plant and bacterial chitinases differ in antifungal activity (1988) J. Gen. Microbiol., 134, pp. 169-176
  • Romano, A., Raemakers, K., Bernardi, J., Visser, R., Mooibroek, H., Transgene organization in potato after particle bombardment-mediated (co-) transformation using plasmids and gene cassettes (2003) Transgenic Res., 12, pp. 461-473
  • Ryan, A.D., Kinkel, L.L., Schottel, J.L., Effect of pathogen isolate, potato cultivar, and antagonist strain on potato scab severity and biological control (2004) Biocontrol Sci. Technol., 14, pp. 301-311
  • Schaad, N.W., Jones, J.B., Chun, W., (2001) Laboratory guide for identification of plant pathogenic bacteria, , APS Press, The American Phytopathological Society, St. Paul, Minnesota, USA
  • Selitrennikoff, C.P., Antifungal proteins (2001) Appl. Env. Microbiol., 67, pp. 2883-2894
  • Serrano, C., Arce-Johnson, P., Torres, H., Gebauer, M., Gutiérrez, M., Moreno, M., Jordana, X., Holuigue, L., Expression of the chicken lysozyme gene in potato enhances resistance to infection by Erwinia carotovora subsp. atroseptica (2000) Am. J. Potato Res., 77, pp. 191-194
  • Shah, D.M., Genetic engineering for fungal and bacterial diseases (1997) Curr. Opin. Biotechnol., 8, pp. 208-214
  • Singh, N.K., Bracker, C.A., Hasegawa, P.M., Handa, A.K., Buckel, S., Hermodson, M.A., Pfankoch, E., Bressan, R.A., Characterization of osmotin: a thaumatin-like protein associated with osmotic adaptation in plant cells (1987) Plant Physiol., 85, pp. 529-536
  • Sneh, B., Burpee, L., Ogoshi, A., (1991) Cytomorphical key to Rhizoctonia spp. Identification of Rhizoctonia species, pp. 39-42. , APS Press, The American Phytopathological Society, NY, USA
  • Stevenson, W.R., Loria, R., Franc, G.D., Weingartner, D.P., (2001) Compendium of Potato Diseases, , APS Press, NY, USA
  • Stiekema, W.J., Heidekamp, F., Louwerse, J.D., Verhoeven, H.A., Dijkhuis, P., Introduction of foreign genes into potato cultivars Bintje and Désirée using an Agrobacterium tumefaciens binary vector (1988) Plant Cell Rep., 7, pp. 47-50
  • Termorshuizen, A.J., Fungal and fungus-like pathogens of potato (2007) Potato Biology and Biotechnology: Advances and Perspectives, pp. 643-650. , Elsevier, The Netherlands, D. Vreugdenhill (Ed.)
  • Yaron, S., Rydlo, T., Shachar, D., Mor, A., Activity of dermaseptin K 4-S4 against foodborne pathogens (2003) Peptides, 24, pp. 1815-1821
  • Yeaman, M.R., Yount, N.Y., Mechanisms of antimicrobial peptide action and resistance (2003) Pharmacol. Rev., 55, pp. 27-55
  • Yun, D.J., Ibeas, J.I., Lee, H., Coca, M.A., Narasimhan, M.L., Uesono, Y., Hasegawa, P.M., Bressan, R.A., Osmotin, a plant antifungal protein, subverts signal transduction to enhance fungal cell susceptibility (1998) Mol. Cell, 1, pp. 807-812
  • Zasloff, M., Antimicrobial peptides of multicellular organisms (2002) Nature, 415, pp. 389-395

Citas:

---------- APA ----------
Rivero, M., Furman, N., Mencacci, N., Picca, P., Toum, L., Lentz, E., Bravo-Almonacid, F.,..., Mentaberry, A. (2012) . Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens. Journal of Biotechnology, 157(2), 334-343.
http://dx.doi.org/10.1016/j.jbiotec.2011.11.005
---------- CHICAGO ----------
Rivero, M., Furman, N., Mencacci, N., Picca, P., Toum, L., Lentz, E., et al. "Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens" . Journal of Biotechnology 157, no. 2 (2012) : 334-343.
http://dx.doi.org/10.1016/j.jbiotec.2011.11.005
---------- MLA ----------
Rivero, M., Furman, N., Mencacci, N., Picca, P., Toum, L., Lentz, E., et al. "Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens" . Journal of Biotechnology, vol. 157, no. 2, 2012, pp. 334-343.
http://dx.doi.org/10.1016/j.jbiotec.2011.11.005
---------- VANCOUVER ----------
Rivero, M., Furman, N., Mencacci, N., Picca, P., Toum, L., Lentz, E., et al. Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens. J. Biotechnol. 2012;157(2):334-343.
http://dx.doi.org/10.1016/j.jbiotec.2011.11.005