Artículo

Duchowicz, P.R.; Fioressi, S.E.; Bacelo, D.E.; Saavedra, L.M.; Toropova, A.P.; Toropov, A.A. "QSPR studies on refractive indices of structurally heterogeneous polymers" (2015) Chemometrics and Intelligent Laboratory Systems. 140:86-91
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We developed a predictive Quantitative Structure-Property Relationship (QSPR) for the refractive indices of 234 structurally diverse polymers. The model involves a single molecular descriptor and a conformation-independent approach. The most appropriate polymer structure representation was investigated by considering 1-5 monomeric repeating units. The established equations were validated and tested through various well-known techniques, such as the use of an external test set of compounds, the Cross-Validation method, Y-Randomization and Applicability Domain, and finally a comparison was also performed to published results from the li terature. The developed QSPR could be useful for assisting the development of new polymeric materials. © 2014 Elsevier B.V.

Registro:

Documento: Artículo
Título:QSPR studies on refractive indices of structurally heterogeneous polymers
Autor:Duchowicz, P.R.; Fioressi, S.E.; Bacelo, D.E.; Saavedra, L.M.; Toropova, A.P.; Toropov, A.A.
Filiación:Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas INIFTA, (CCT La Plata-CONICET UNLP), Diag. 113 y 64, Sucursal 4, C.C. 16, La Plata, 1900, Argentina
Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano, Villanueva 1324, Buenos Aires, CP 1426, Argentina
Cátedra de Química Teórica y Computacional, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 115 y 47, La Plata, 1900, Argentina
IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milano, 20156, Italy
Palabras clave:CORAL software; Graph theory; Monte Carlo method; Polymer; QSPR theory; Refractive index; poly(1 methylethylene); poly(1,1 dichloroethylene); poly(2,3 dibromopropyl methacrylate); poly(ethylmethylene); poly(para xylylene); poly(pentabromophenyl methacrylate); poly(pentadecafluorooctyl acrylate); polyethylene; polymer; polysulfone; polyvinyl alcohol; unclassified drug; Article; conformation; controlled study; mathematical model; predictive value; quantitative structure property relation; refraction index; structure analysis; validation study
Año:2015
Volumen:140
Página de inicio:86
Página de fin:91
DOI: http://dx.doi.org/10.1016/j.chemolab.2014.11.008
Título revista:Chemometrics and Intelligent Laboratory Systems
Título revista abreviado:Chemometr. Intelligent Lab. Syst.
ISSN:01697439
CODEN:CILSE
CAS:polyethylene, 9002-88-4; polysulfone, 25135-51-7; polyvinyl alcohol, 37380-95-3, 9002-89-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01697439_v140_n_p86_Duchowicz

Referencias:

  • Knoll, W., Interfaces and thin films as seen by bound electromagnetic waves (1998) Ann. Rev. Phys. Chem., 49, pp. 569-638
  • Samuels, R.J., Application of refractive index measurements to polymer analysis (1981) J. Appl. Polym. Sci., 26, pp. 1383-1412
  • Hu, R., Lam, J.W.Y., Tang, B.Z., Recent progress in the development of new acetylenic polymers (2013) Macromol. Chem. Phys., 214, pp. 175-187
  • Schraub, M., Soll, S., Hampp, N., High refractive index coumarin-based photorefractive polysiloxanes (2013) Eur. Polym. J., 49, pp. 1714-1721
  • Sydlik, S.A., Chen, Z., Swager, T.M., Triptycene polyimides: soluble polymers with high thermal stability and low refractive indices (2011) Macromolecules, 44, pp. 976-980
  • van Krevelen, D.W., te Nijenhuis, K., (2009) Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, , Elsevier, New York
  • Hansch, C., Leo, A., Exploring QSAR (1995) Fundamentals and Applications in Chemistry and Biology, , American Chemical Society, Washington, D. C
  • Kubinyi, H., (2008) QSAR: Hansch Analysis and Related Approaches, , Wiley-Interscience, New York
  • (2010) Recent Advances in QSAR Studies: Methods and Applications, , Springer Science&Business Media B.V., Netherlands, T. Puzyn, J. Leszczynski, M.T.D. Cronin (Eds.)
  • Katritzky, A.R., Goordeva, E.V., Traditional topological indexes vs electronic, geometrical, and combined molecular descriptors in QSAR/QSPR research (1993) J. Chem. Inf. Comput. Sci., 33, pp. 835-857
  • Diudea, M.V.E., (2001) QSPR/QSAR Studies by Molecular Descriptors, , Nova Science Publishers, New York
  • Todeschini, R., Consonni, V., (2009) Molecular Descriptors for Chemoinformatics (Methods and Principles in Medicinal Chemistry), , Wiley-VCH, Weinheim
  • Golbraikh, A., Tropsha, A., Beware of q 2! (2002) J. Mol. Graphics Modell., 20, pp. 269-276
  • Hawkins, D.M., Basak, S.C., Mills, D.J., Assessing model fit by cross-validation (2003) Chem. Inf. Model., 43, pp. 579-586
  • Putz, M.V., Putz, A.-M., Lazea, M., Ienciu, L., Chiriac, A., Quantum-SAR extension of the spectral-SAR algorithm. Application to polyphenolic anticancer bioactivity (2009) Int. J. Mol. Sci., 10, pp. 1193-1214
  • Putz, M.V., Ionascu, C., Putz, A.-M., Ostafe, V., Alert-QSAR. Implications for electrophilic theory of chemical carcinogenesis (2011) Int. J. Mol. Sci., 12, pp. 5098-5134
  • Bicerano, J., (1996) Prediction of Polymer Properties, , Marcel Dekker Inc., New York
  • García-Domenech, R., de Julián-Ortiz, J.V., Prediction of indices of refraction and glass transition temperatures of linear polymers by using graph theoretical indices (2002) J. Phys. Chem. B, 106, pp. 1501-1507
  • Hawkins, D.M., The problem of overfitting (2004) J. Chem. Inf. Comput. Sci., 44, pp. 1-12
  • Katritzky, A.A., Sild, S., Karelson, M., Correlation and prediction of the refractive indices of polymers by QSPR (1998) J. Chem. Inf. Comput. Sci., 38, pp. 1171-1176
  • Xu, J., Chen, B., Zhang, Q.J., Guo, B., Prediction of refractive indices of linear polymers by a four-descriptor QSPR model (2004) Polymer, 45, pp. 8651-8659
  • Astray, G., Cid, A., Moldes, O., Ferreiro-Lage, J.A., Gálvez, J.F., Mejuto, J.C., Prediction of refractive index of polymers using artificial neural networks (2010) J. Chem. Eng. Data, 55, pp. 5388-5393
  • Duchowicz, P.R., Comelli, N.C., Ortiz, E.V., Castro, E.A., QSAR study for carcinogenicity in a large set of organic compounds (2012) Curr. Drug Saf., 7, pp. 282-288
  • Talevi, A., Bellera, C.L., Ianni, M.D., Duchowicz, P.R., Bruno-Blanch, L.E., Castro, E.A., An integrated drug development approach applying topological descriptors (2012) Curr. Comput. Aided Drug Des., 8, pp. 172-181
  • Toropov, A.A., Toropova, A.P., Benfenati, E., Gini, G., OCWLGI descriptors: theory and praxis (2013) Curr. Comput. Aided Drug Des., 9, pp. 226-232
  • Mullen, L.M.A., Duchowicz, P.R., Castro, E.A., QSAR treatment on a new class of triphenylmethyl-containing compounds as potent anticancer agents (2011) Chemom. Intell. Lab. Syst., 107, pp. 269-275
  • García, J., Duchowicz, P.R., Rozas, M.F., Caram, J.A., Mirífico, M.V., Fernández, F.M., Castro, E.A., A comparative QSAR on 1, 2, 5-thiadiazolidin-3-one 1, 1-dioxide compounds as selective inhibitors of human serine proteinases (2011) J. Mol. Graphics Modell., 31, pp. 10-19
  • Ibezim, E., Duchowicz, P.R., Ortiz, E.V., Castro, E.A., QSAR on aryl-piperazine derivatives with activity on malaria (2012) Chemom. Intell. Lab. Syst., 110, pp. 81-88
  • Toropov, A.A., Toropova, A.P., Prediction of heteroaromatic amine mutagenicity by means of correlation weighting of atomic orbital graphs of local invariants (2001) J. Mol. Struct. Theochem, 538, pp. 287-293
  • Toropov, A.A., Nesterov, I.V., Nabiev, O.M., QSAR modeling of dihydrofolate reductase inhibitory activity by correlation weighting of nearest neighboring codes (2003) J. Mol. Struct. Theochem, 622, pp. 269-273
  • Toropov, A.A., Leszczynska, D., Leszczynski, J., Predicting water solubility and octanol water partition coefficient for carbon nanotubes based on the chiral vector (2007) J. Comput. Biol. Chem., 31, pp. 127-128
  • Toropov, A.A., Leszczynska, D., Leszczynski, J., Predicting thermal conductivity of nanomaterials by correlation weighting technological attributes codes (2007) Mater. Lett., 61, pp. 4777-4780
  • Toropov, A.A., Benfenati, E., Additive, E., SMILES-based optimal descriptors in QSAR modelling bee toxicity: using rare SMILES attributes to define the applicability domain (2008) Bioorg. Med. Chem., 26, pp. 4801-4809
  • Toropov, A.A., Toropova, A.P., Benfenati, E., Gini, G., Puzyn, T., Leszczynska, D., Leszczynski, J., Novel application of the CORAL software to model cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli (2012) Chemosphere, 89, pp. 1098-1102
  • Toropov, A.A., Toropova, A.P., Martyanov, S.E., Benfenati, E., Gini, G., Leszczynska, D., Leszczynski, J., Comparison of SMILES and molecular graphs as the representation of the molecular structure for QSAR analysis for mutagenic potential of polyaromatic amines (2011) Chemom. Intell. Lab. Syst., 109, pp. 94-100
  • Toropova, A.P., Toropov, A.A., Martyanov, S.E., Benfenati, E., Gini, G., Leszczynska, D., Leszczynski, J., CORAL: QSAR modeling of toxicity of organic chemicals towards Daphnia magna (2012) Chemom. Intell. Lab. Syst., 110, pp. 177-181
  • Brandrup, J., Immergut, E.H., Grulke, E.A., (1975) Polymer Handbook, , John Wiley and Sons
  • http://www.insilico.eu/CORAL, (Accessed: 04-Aug-2014); Milano chemometrics and QSAR research group. VCCLAB, virtual computational chemistry laboratory, , http://michem.disat.unimib.it/chm, (Accessed: 24-July-2014)
  • Katritzky group, , http://www.ark.chem.ufl.edu/, (Accessed: 24-July-2014)
  • Rücker, C., Rücker, G., Meringer, M., Y-Randomization and its variants in QSPR/QSAR (2007) J. Chem. Inf. Model., 47, pp. 2345-2357
  • Gramatica, P., Principles of QSAR models validation: internal and external (2007) QSAR Comb. Sci., 26, pp. 694-701
  • Eriksson, L., Jaworska, J., Worth, A.P., Cronin, M.T., McDowell, R.M., Gramatica, P., Methods for reliability and uncertainty assessment and for applicability evaluations of classification-and regression-based QSARs (2003) Environ. Health Perspect., 111, pp. 1361-1375
  • Mercader, A.G., Duchowicz, P.R., Fernández, F.M., Castro, E.A., Advances in the replacement and enhanced replacement method in QSAR and QSPR theories (2011) J. Chem. Inf. Model., 51, pp. 1575-1581
  • Roy, K., On some aspects of validation of predictive quantitative structure-activity relationship models (2007) Expert Opin. Drug Discovery, 2, pp. 1567-1577

Citas:

---------- APA ----------
Duchowicz, P.R., Fioressi, S.E., Bacelo, D.E., Saavedra, L.M., Toropova, A.P. & Toropov, A.A. (2015) . QSPR studies on refractive indices of structurally heterogeneous polymers. Chemometrics and Intelligent Laboratory Systems, 140, 86-91.
http://dx.doi.org/10.1016/j.chemolab.2014.11.008
---------- CHICAGO ----------
Duchowicz, P.R., Fioressi, S.E., Bacelo, D.E., Saavedra, L.M., Toropova, A.P., Toropov, A.A. "QSPR studies on refractive indices of structurally heterogeneous polymers" . Chemometrics and Intelligent Laboratory Systems 140 (2015) : 86-91.
http://dx.doi.org/10.1016/j.chemolab.2014.11.008
---------- MLA ----------
Duchowicz, P.R., Fioressi, S.E., Bacelo, D.E., Saavedra, L.M., Toropova, A.P., Toropov, A.A. "QSPR studies on refractive indices of structurally heterogeneous polymers" . Chemometrics and Intelligent Laboratory Systems, vol. 140, 2015, pp. 86-91.
http://dx.doi.org/10.1016/j.chemolab.2014.11.008
---------- VANCOUVER ----------
Duchowicz, P.R., Fioressi, S.E., Bacelo, D.E., Saavedra, L.M., Toropova, A.P., Toropov, A.A. QSPR studies on refractive indices of structurally heterogeneous polymers. Chemometr. Intelligent Lab. Syst. 2015;140:86-91.
http://dx.doi.org/10.1016/j.chemolab.2014.11.008