Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Nonlinear realizations of the SO(4, 2) group are discussed from the point of view of symmetries. Dynamical symmetry breaking is introduced. One linear and one quadratic model in curvature are constructed. Coherent states of the Klauder-Perelomov type are defined for both cases taking into account the coset geometry. A new spontaneous compactification mechanism is defined in the subspace invariant under the stability subgroup. The physical implications of the symmetry rupture in the context of nonlinear realizations and direct gauging are analyzed and briefly discussed. © 2018 World Scientific Publishing Company.

Registro:

Documento: Artículo
Título:Dynamical symmetries, coherent states and nonlinear realizations: The S O (2, 4) case
Autor:Arbuzov, A.B.; Cirilo-Lombardo, D.J.
Filiación:Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, 141980, Russian Federation
Consejo Nacional de Investigaciones Cientificas y Tecnicas, Universidad de Buenos Aires, National Institute of Plasma Physics (INFIP), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:coherent states; conformal symmetry; Group theory; nonlinear realizations
Año:2018
Volumen:15
Número:1
DOI: http://dx.doi.org/10.1142/S0219887818500056
Título revista:International Journal of Geometric Methods in Modern Physics
Título revista abreviado:Int. J. Geom. Methods Mod. Phys.
ISSN:02198878
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02198878_v15_n1_p_Arbuzov

Referencias:

  • Isaev, A.P., Quantum group covariant noncommutative geometry (1994) J. Math. Phys., 35, p. 6784. , arXiv: hep-th/9402060
  • Aschieri, P., Castellani, L., Isaev, A.P., Discretized Yang-Mills and Born-Infeld actions on finite group geometries (2003) Int. J. Mod. Phys. A, 18, p. 3555. , arXiv: hep-th/0201223
  • Blagojevic, M., (2002) Gravitation and Gauge Symmetries, 522p. , IOP, Bristol, UK
  • Hayashi, K., Shirafuji, T., Gravity from Poincare gauge theory of the fundamental particles. 7. The axial vector model (1981) Prog. Theor. Phys., 66, p. 2258
  • Borisov, A.B., The unitary representations of the general covariant group algebra (1978) J. Phys. A, 11, p. 1057
  • Utiyama, R., Invariant theoretical interpretation of interaction (1956) Phys. Rev., 101, p. 1597
  • Capozziello, S., De Laurentis, M., Extended theories of gravity (2011) Phys. Rep., 509, p. 167. , arXiv: 1108. 6266 [gr-qc]
  • Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne'Eman, Y., Metric affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance (1995) Phys. Rep., 258, p. 1. , arXiv: gr-qc/9402012
  • Ivanenko, D., Sardanashvily, G., The gauge treatment of gravity (1983) Phys. Rep., 94, p. 1
  • Obukhov, Y.N., Poincare gauge gravity: Selected topics (2006) Int. J. Geom. Methods Mod. Phys., 3, p. 95. , arXiv: gr-qc/0601090
  • Ne'Eman, Y., Regge, T., Gauge theory of gravity and supergravity on a group manifold (1978) Riv. Nuovo Cimento, 1 (5), p. 1
  • Gotzes, S., Hirshfeld, A.C., A geometric formulation of the so (3. 2) theory of gravity (1990) Annals Phys., 203, p. 410
  • Shirafuji, T., Suzuki, M., Gauge theory of gravitation: A unified formulation of Poincare and anti-de Sitter gauge theories (1988) Prog. Theor. Phys., 80, p. 711
  • Ivanov, E.A., Niederle, J., Gauge formulation of gravitation theories. 1. The Poincare, de Sitter and conformal cases (1982) Phys. Rev. D, 25, p. 976
  • Ivanov, E.A., Niederle, J., Gauge formulation of gravitation theories. 2. The special conformal case (1982) Phys. Rev. D, 25, p. 988
  • Leclerc, M., The Higgs sector of gravitational gauge theories (2006) Annals Phys., 321, p. 708. , arXiv: gr-qc/0502005
  • Stelle, K.S., West, P.C., Spontaneously broken de Sitter symmetry and the gravitational holonomy group (1980) Phys. Rev. D, 21, p. 1466
  • Tseytlin, A.A., On the Poincare and de Sitter Gauge theories of gravity with propagating torsion (1982) Phys. Rev. D, 26, p. 3327
  • Lord, E.A., Goswami, P., Gauge theory of a group of diffeomorphisms. 1. General principles (1986) J. Math. Phys., 27, p. 2415
  • Lord, E.A., Gauge theory of a group of diffeomorphisms. 2. The conformal and de Sitter groups (1986) J. Math. Phys., 27, p. 3051
  • Greenberg, M., (1971) Lectures on Algebraic Topology, , W. A. Benjamin, Menlo Park
  • Kobayashi, S., Nomizu, K., (1963) Foundations of Differential Geometry, , John Wiley & Sons, New York
  • Sardanashvily, G., Classical gauge gravitation theory (2011) Int. J. Geom. Methods Mod. Phys., 8, p. 1869. , arXiv: 1110. 1176 [math-ph]
  • Giachetta, G., Mangiarotti, L., Sardanashvily, G., (2009) Advanced Classical Field Theory, , World Scientific
  • Kirsch, I., A Higgs mechanism for gravity (2005) Phys. Rev. D, 72, p. 024001. , arXiv: hep-th/0503024
  • Keyl, M., About the geometric structure of symmetry breaking (1991) J. Math. Phys., 32, p. 1065
  • Nikolova, L., Rizov, V.A., Geometrical approach to the reduction of gauge theories with spontaneously broken symmetry (1984) Rep. Math. Phys., 20, p. 287
  • Sardanashvily, A., On the geometry of spontaneous symmetry breaking (1992) J. Math. Phys., 33, p. 1546
  • Sardanashvily, G., Geometry of classical Higgs fields (2006) Int. J. Geom. Methods Mod. Phys., 3, p. 139. , arXiv: hep-th/0510168
  • Sardanashvily, G., Mathematical Models of Spontaneous Symmetry Breaking, , arXiv: 0802. 2382 [math-ph]
  • Sardanashvily, G., Classical Higgs fields (2014) Theor. Math. Phys., 181, p. 1598. , arXiv: 1602. 03818 [math-ph]
  • Trautman, A., (1984) Differential Geometry for Physicists, p. 145. , Bibliopolis, Naples, Italy
  • Lawson, H.B., Michelsohn, M.L., (1989) Spin Geometry, , Princeton University Press, Princeton
  • Sardanashvily, G., Gravity as a goldstone field in the Lorentz gauge theory (1980) Phys. Lett. A, 75, p. 257
  • Sardanashvily, G.A., Zakharov, O., (1992) Gauge Gravitation Theory, 122p. , World Scientific, Singapore
  • Hawking, S.W., Ellis, G.F.R., (1973) The Large Scale Structure of Space-time, 404p. , Cambridge University Press, Cambridge
  • Sardanashvily, G., What are the Poincare gauge fields (1983) Czech. J. Phys. B, 33, p. 610
  • Volkov, D.V., Soroka, V.A., Higgs effect for Goldstone particles with spin 1/2 (1973) JETP Lett., 18, p. 312
  • (1973) Pisma Zh. Eksp. Teor. Fiz., 18, p. 529
  • Akulov, V.P., Volkov, D.V., Soroka, V.A., Gauge fields on superspaces with different holonomy groups (1975) JETP Lett., 22, p. 187
  • (1975) Pisma Zh. Eksp. Teor. Fiz., 22, p. 396
  • Nath, P., Arnowitt, R.L., Generalized supergauge symmetry as a new framework for unified gauge theories (1975) Phys. Lett. B, 56, p. 177
  • MacDowell, S.W., Mansouri, F., Unified geometric theory of gravity and supergravity (1977) Phys. Rev. Lett., 38, p. 739. , Erratum 38, 1977) 1376
  • Kerrick, D.M., SO (2, 4) symmetry and the Einstein-Maxwell equations (1995) Phys. Rev. D, 51, p. 1674
  • Volkov, D.V., Pashnev, A.I., Supersymmetric Lagrangian for particles in proper time (1980) Theor. Math. Phys., 44, p. 770
  • (1980) Teor. Mat. Fiz., 44, p. 321
  • Inonu, E., Wigner, E.P., On the contraction of groups and their represenations (1953) Proc. Nat. Acad. Sci., 39, p. 510
  • Cirilo-Lombardo, D.J., Non-compact groups, coherent states, relativistic wave equations and the harmonic oscillator (2007) Found. Phys., 37, p. 919
  • (2007) Found. Phys., 37, p. 1149
  • (2008) Found. Phys., 38, p. 99. , arXiv: hep-th/0701195
  • De Azcarraga, J.A., Lukierski, J., Supersymmetric particle model with additional bosonic coordinates (1986) Z. Phys. C, 30, p. 221
  • Cirilo-Lombardo, D.J., Arbuzov, A., Work in Progress
  • Ogievetsky, V.I., Infinite-dimensional algebra of general covariance group as the closure of finite-dimensional algebras of conformal and linear groups (1973) Lett. Nuovo Cimento, 8, p. 988
  • Volkov, D.V., Akulov, V.P., Is the neutrino a Goldstone particle? (1973) Phys. Lett. B, 46, p. 109
  • Capozziello, S., Cirilo-Lombardo, D.J., De Laurentis, M., The affine structure of gravitational theories: Symplectic groups and geometry (2014) Int. J. Geom. Methods Mod. Phys., 11, p. 1450081
  • Borisov, A.B., Ogievetsky, V.I., Theory of dynamical affine and conformal symmetries as gravity theory (1975) Theor. Math. Phys., 21, p. 1179
  • (1974) Teor. Mat. Fiz., 21, p. 329
  • Cirilo-Lombardo, D.J., Non-compact groups, coherent states, relativistic wave equations and the harmonic oscillator II: Physical and geometrical considerations (2009) Found. Phys., 39, pp. 373-396
  • Cirilo-Lombardo, D.J., The geometrical properties of Riemannian superspaces, exact solutions and the mechanism of localization (2008) Phys. Lett. B, 661, pp. 186-191

Citas:

---------- APA ----------
Arbuzov, A.B. & Cirilo-Lombardo, D.J. (2018) . Dynamical symmetries, coherent states and nonlinear realizations: The S O (2, 4) case. International Journal of Geometric Methods in Modern Physics, 15(1).
http://dx.doi.org/10.1142/S0219887818500056
---------- CHICAGO ----------
Arbuzov, A.B., Cirilo-Lombardo, D.J. "Dynamical symmetries, coherent states and nonlinear realizations: The S O (2, 4) case" . International Journal of Geometric Methods in Modern Physics 15, no. 1 (2018).
http://dx.doi.org/10.1142/S0219887818500056
---------- MLA ----------
Arbuzov, A.B., Cirilo-Lombardo, D.J. "Dynamical symmetries, coherent states and nonlinear realizations: The S O (2, 4) case" . International Journal of Geometric Methods in Modern Physics, vol. 15, no. 1, 2018.
http://dx.doi.org/10.1142/S0219887818500056
---------- VANCOUVER ----------
Arbuzov, A.B., Cirilo-Lombardo, D.J. Dynamical symmetries, coherent states and nonlinear realizations: The S O (2, 4) case. Int. J. Geom. Methods Mod. Phys. 2018;15(1).
http://dx.doi.org/10.1142/S0219887818500056