El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Green tea polyphenols have a good antioxidant capacity but poor interfacial activity. β-lactoglobulin (β-lg) was used as an emulsifier agent and also as a carrier molecule by spontaneous nanocomplexes formation with green tea polyphenols. Oil-in-water emulsions containing liver fish oil rich in ω-3 fatty acids were formulated using these nanocomplexes at pH 6. The interfacial behavior of these complexes showed that both surface pressure and dilatational properties decreased as compared with pure β-lg. However, the initial droplet size and stability of emulsions were improved in the presence of the nanocomplexes. Moreover, the oxidative stability of liver fish oil was improved by the presence of polyphenols. © 2013 Elsevier Ltd.


Documento: Artículo
Título:Green tea polyphenols-β-lactoglobulin nanocomplexes: Interfacial behavior, emulsification and oxidation stability of fish oil
Autor:von Staszewski, M.; Pizones Ruiz-Henestrosa, V.M.; Pilosof, A.M.R.
Filiación:CONICET, Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
Idioma: Inglés
Palabras clave:β-lactoglobulin; Antioxidant; Emulsions; Green tea polyphenols; Interfacial properties
Página de inicio:505
Página de fin:511
Título revista:Food Hydrocolloids
Título revista abreviado:Food Hydrocolloids


  • Abeywardena, M.Y., Head, R.J., Long chain n-3 polyunsaturated fatty acids and blood vessel function (2001) Cardiovascular Research, 52 (3), pp. 361-371
  • Almajano, M.P., Delgado, M.E., Gordon, M.H., Albumin causes a synergistic increase in the antioxidant activity of green tea catechins in oil-in-water emulsions (2007) Food Chemistry, 102, pp. 1375-1382
  • Asano, Y., Sotoyama, K., Viscosity change in oil/water food emulsions prepared using a membrane emulsification system (1999) Food Chemistry, 66, pp. 327-331
  • Benjamins, J., Cagna, A., Lucassen-Reynders, E.H., Viscoelastic properties of triacylglycerol/water interfaces covered by proteins (1996) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 114, pp. 245-254
  • Berton, C., Genot, C., Guibert, D., Ropers, M.H., Effect of lateral heterogeneity in mixed surfactant-stabilized interfaces on the oxidation of unsaturated lipids in oil-in-water emulsions (2012) Journal of Colloid and Interface Science, 377, pp. 244-250
  • Berton, C., Genot, C., Ropers, M.H., Quantification of unadsorbed protein and surfactant emulsifiers in oil-in-water emulsions (2011) Journal of Colloid and Interface Science, 354, pp. 739-748
  • Berton, C., Ropers, M.H., Bertrand, D., Viau, M., Genot, C., Oxidative stability of oil-in-water emulsions stabilised with protein or surfactant emulsifiers in various oxidation conditions (2012) Food Chemistry, 131, pp. 1360-1369
  • Britten, M., Giroux, H.J., Coalescence index of protein-stabilised emulsions (1991) Journal of Food Science, 56, pp. 792-795
  • Camino, N.A., Pilosof, A.M.R., Hydroxypropylmethylcellulose at the oil-water interface. Part II. Submicron emulsions as affected by pH (2011) Food Hydrocolloids, 25, pp. 1051-1062
  • Camino, N.A., Sanchez, C.C., Rodríguez Patino, J.M., Pilosof, A.M.R., Hydroxypropylmethylcellulose-β-lactoglobulin mixtures at the oil-water interface. Bulk, interfacial and emulsification behavior as affected by pH (2012) Food Hydrocolloids, 27 (2), pp. 464-474
  • Carrera Sánchez, C., Rodríguez Patino, J.M., Interfacial, foaming and emulsifying characteristics of sodium caseinate as influenced by protein concentration in solution (2008) Food Hydrocolloids, 19 (3), pp. 407-416
  • Charlton, A.J., Baxter, N.J., Lokman Khan, M., Moir, A.J.G., Haslam, E., Davies, A.P., Polyphenol/peptide binding and precipitation (2002) Journal of Agricultural and Food Chemistry, 50, pp. 1593-1601
  • Cornec, M., Wilde, P., Gunning, P., Mackie, A., Husband, F., Parker, M., Emulsions stability as affected by competitive adsorption between an oil-soluble emulsifier and milk proteins at the interface (1998) Journal of Food Science, 63, pp. 39-43
  • Dickinson, E., Adsorbed protein layers at fluid interfaces: interactions, structure and surface rheology (1999) Colloids and Surfaces B: Biointerfaces, 15 (2), pp. 161-176
  • Dreosti, I.E., Antioxidant polyphenols in tea, cocoa, and wine (2000) Nutrition, 16, pp. 692-694
  • Flick, G.F., Martin, J., (1992) Lipid oxidation in food advances in seafood biochemistry, , Technomic Publishing Company
  • Galazka, V.B., Dickinson, E., Ledward, D.A., Effect of high pressure on the emulsifying behaviour of β-lactoglobulin (1996) Food Hydrocolloids, 10, pp. 213-219
  • Genot, C., Meynier, A., Riaublanc, A., Lipid oxidation in emulsions (2003) Lipid oxidation pathways, pp. 190-244. , AOCS Press, Champaign, A. Kamal-Eldin (Ed.)
  • Gramza, A., Korczak, J., Tea constituents (Camellia sinensis L.) as antioxidants in lipid systems (2005) Trends in Food Science & Technology, 16 (8), pp. 351-358
  • Griffin, W.G., Griffin, M.C.A., Time-dependent polydispersity of growing colloidal aggregates: predictions from dynamic light scattering (1993) Journal of the Chemical Society, Faraday Transactions, 89, pp. 2879-2889
  • Gu, Y., Decker, E., McClements, D.J., Production and characterization of oil-water emulsions containing droplets stabilized by multilayer membranes consisting of β-lactoglobulin, ι-carrageenan and gelatin (2005) Langmuir, 21, pp. 5752-5760
  • Guzey, D., Kim, H.J., McClements, D.J., Factors influencing the production of O/W emulsions stabilized by β-lactoglobulin-pectin membranes (2004) Food Hydrocolloids, 18, pp. 967-975
  • Hsieh, R., Kinsella, J., Oxidation of polyunsaturated fatty acids: mechanisms, products and inhibition with emphasis on fish (1989) Advances in Food Research and Nutrition Research, 33, pp. 233-341
  • Huang, X., Kakuda, Y., Cui, W., Hydrocolloids in emulsions: particle size distribution and the interfacial activity (2001) Food Hydrocolloids, 15, pp. 533-542
  • Jacobsen, C., Hartvigsen, K., Lund, P., Meyer, A.S., Adler-Nissen, J., Holsstborg, J., Oxidation in fish-oil-enriched mayonnaise. 1. Assessment of propyl gallate as an antioxidant by discriminant partial least squares regression analysis (1999) European Food Research and Technology, 210, pp. 13-30
  • Jöbstl, E., O'Connell, J., Fairclough, P.A., Williamson, M.P., Astringency - a molecular model for polyphenol/protein binding (2004) Fibre Diffraction Review, 12, pp. 66-69
  • Kanakis, C.D., Hasni, I., Bourassa, P., Tarantilis, P.A., Polissiou, M.G., Tajmir-Riahi, H.A., Milk β-lactoglobulin complexes with tea polyphenols (2011) Food Chemistry, 127, pp. 1046-1055
  • Labourdenne, S., Gaudry-Rolland, N., Letellier, S., Lin, M., Cagna, A., Esposito, G., The oil-drop tensiometer: potential applications for studying the kinetics of (phospho)lipase action (1994) Chemistry and Physics of Lipids, 71 (2), pp. 163-173
  • Leroux, J., Langendorff, V., Schick, G., Vaishnav, V., Mazoyer, J., Emulsion stabilizing properties of pectin (2003) Food Hydrocolloids, 17, pp. 455-462
  • Lin, H.-C., Chen, P.-C., Cheng, T.-J., Chen, R.L.C., Formation of tannin-albumin nano-particles at neutral pH as measured by light scattering techniques (2004) Analytical Biochemistry, 325, pp. 117-120
  • Lucassen, J., Van Den Tempel, M., Dynamic measurements of dilational properties of a liquid interface (1972) Chemical Engineering Science, 27 (6), pp. 1283-1291
  • Martinez, M.J., Carrera Sanchez, C., Rodríguez Patino, J.M., Pilosof, A.M.R., Bulk and interfacial behaviour of caseinoglycomacropeptide (GMP) (2009) Colloids and Surfaces B: Biointerfaces, 71, pp. 230-237
  • McClements, D.J., Emulsion ingredients (1999) Food emulsions: Principles, practice and techniques, pp. 83-124. , CRC Press, Florida, USA, D.J. McClements (Ed.)
  • McKenzie, H.A., Sawyer, W.H., Effect of pH on β-lactoglobulin (1967) Nature, 214, pp. 1101-1104
  • McLennan, P.L., Abeywardena, M.Y., Membrane basis for fish oil effects on the heart: linking natural hibernators to prevention of human sudden cardiac death (2005) Journal of Membrane Biology, 206 (2), pp. 85-102
  • Mengual, O., Meunier, G., Cayré, I., Puech, K., Snabre, P., Turbiscan MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis (1999) Talanta, 50, pp. 445-456
  • Palazolo, G., (2006) Formación y estabilidad de emulsiones O/W preparadas con proteínas nativas y desnaturalizadas de soja. vol, , PhD thesis, Universidad Nacional de La Plata, Argentina
  • Palazolo, G.G., Sorgentini, D.A., Wagner, J.R., Coalescence and flocculation in o/w emulsions of native and denatured whey soy proteins in comparison with soy protein isolates (2005) Food Hydrocolloids, 19 (3), pp. 595-604
  • Pazos, M., Gallardo, J.M., Torres, J.L., Medina, I., Activity of grape polyphenols as inhibitors of the oxidation of fish lipids and frozen fish muscle (2005) Food Chemistry, 92, pp. 547-557
  • Pizones Ruiz-Henestrosa, V., Carrera Sánchez, C., Rodríguez Patino, J.M., Effect of sucrose on functional properties of soy globulins: adsorption and foam characteristics (2008) Journal of Agricultural and Food Chemistry, 56, pp. 2512-2521
  • Poncet-Legrand, C., Edelmann, A., Putaux, J.L., Cartalade, D., Sarni-Manchado, P., Vernhet, A., Poly (L-proline) interactions with flavan-3-ols units: Influence of the molecular structure and the polyphenol/protein ratio (2006) Food Hydrocolloids, 20, pp. 687-697
  • Porter, W.L., Paradoxical behaviour of antioxidants in food and biological systems (1993) Antioxidants: Chemical, physiological, nutritional, and toxicological aspects, pp. 93-122. , Princeton Scientific, Princeton, NJ, USA, G.M. Williams (Ed.)
  • Relkin, P., Sourdet, S., Factors affecting fat droplet aggregation in whipped frozen protein-stabilized emulsions (2005) Food Hydrocolloids, 19, pp. 503-511
  • Richard, T., Lefeuvre, D., Descendit, A., Quideau, S., Monti, J.P., Recognition characters in peptide-polyphenol complex formation (2006) Biochimica et biophysica acta, 1760, pp. 951-958
  • Sanguansri, L., Augustin, M.A., Microencapsulation and delivery of omega-3 fatty acids (2006) Functional food ingredients and nutraceuticals: Processing technologies, pp. 297-327. , CRC Press/Taylor and Francis Group, J. Shi (Ed.)
  • Sausse, P., Aguié-Béghin, V., Douillard, R., Effects of epigallocatechin gallate on β-Casein adsorption at the air/water interface (2003) Langmuir, 19, pp. 737-743
  • Shanta, N.C., Decker, E., Rapid, sensitive, iron based spectrophotometric methods for determination of peroxide values of food lipids (1994) Journal of AOAC International, 77 (2), pp. 421-425
  • Shishikura, Y., Khokhar, S., Murray, B.S., Effects of tea polyphenols on emulsification of olive oil in a small intestine model system (2006) Journal of Agricultural and Food Chemistry, 54, pp. 1906-1913
  • Siebert, K.J., Troukhanova, N.V., Lynn, P.Y., Nature of polyphenol-protein interactions (1996) Journal of Agricultural and Food Chemistry, 44, pp. 80-85
  • von Staszewski, M., Jara, F.L., Ruiz, A.L.T.G., Jagus, R.J., Carvalho, J.E., Pilosof, A.M.R., Nanocomplex formation between ß-lactoglobulin or caseinomacropeptide and green tea polyphenols: Impact on protein gelation and polyphenols antiproliferative activity (2012) Journal of Functional Foods, 4 (4), pp. 800-809
  • Sun, Y., Wang, W., Chen, H., Li, C., Autoxidation of unsaturated lipids in food emulsion (2011) Critical Reviews in Food Science and Nutrition, 51, pp. 453-466
  • Tang, S., Kerry, J.P., Sheehan, D., Buckley, D.J., Morrisey, P.A., Antioxidant effect of added tea catechins on susceptibility of cooked red meat, poultry, and fish patties to lipid oxidation (2001) Food Research International, 34, pp. 651-657
  • Waraho, T., McClements, D.J., Decker, E.A., Mechanisms of lipid oxidation in food dispersions (2011) Trends in Food Science & Technology, 22 (1), pp. 3-13
  • Weitz, D., Weintraub, H., Fisher, E., Schwartzbard, A.Z., Fish oil for the treatment of cardiovascular disease (2010) Cardiological Reviews, 18, pp. 258-263
  • Wüstneck, R., Moser, B., Muschiolik, G., Interfacial dilational behaviour of adsorbed β-lactoglobulin layers at the different fluid interfaces (1999) Colloids and Surfaces B: Biointerfaces, 15, pp. 263-273
  • Yilmaz, Y., Novel uses of catechins in foods (2006) Trends in Food Science & Technology, 17, pp. 64-71


---------- APA ----------
von Staszewski, M., Pizones Ruiz-Henestrosa, V.M. & Pilosof, A.M.R. (2014) . Green tea polyphenols-β-lactoglobulin nanocomplexes: Interfacial behavior, emulsification and oxidation stability of fish oil. Food Hydrocolloids, 35, 505-511.
---------- CHICAGO ----------
von Staszewski, M., Pizones Ruiz-Henestrosa, V.M., Pilosof, A.M.R. "Green tea polyphenols-β-lactoglobulin nanocomplexes: Interfacial behavior, emulsification and oxidation stability of fish oil" . Food Hydrocolloids 35 (2014) : 505-511.
---------- MLA ----------
von Staszewski, M., Pizones Ruiz-Henestrosa, V.M., Pilosof, A.M.R. "Green tea polyphenols-β-lactoglobulin nanocomplexes: Interfacial behavior, emulsification and oxidation stability of fish oil" . Food Hydrocolloids, vol. 35, 2014, pp. 505-511.
---------- VANCOUVER ----------
von Staszewski, M., Pizones Ruiz-Henestrosa, V.M., Pilosof, A.M.R. Green tea polyphenols-β-lactoglobulin nanocomplexes: Interfacial behavior, emulsification and oxidation stability of fish oil. Food Hydrocolloids. 2014;35:505-511.