La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Growing attempts are being made to rationally utilize foods for human health improvement and disease prevention. Milk proteins are well suited for this purpose, since they are widely consumed, offer nutritional benefits and have been shown to be potentially suitable carriers for bioactive ingredients, such as vitamins and nutraceuticals. This work characterizes the interactions between β-lactoglobulin (β-lg) and folic acid (FA) at different load ratio and their functional implications, in terms of colloidal behavior and digestibility. Dynamic light scattering, isothermal titration calorimetery and atomic force microscopy were used to investigate β-lg/FA nano-complexes (mean size<10nm) formed at protein:vitamin molar ratio 1:10, whereas three FA molecules were found to be bound to one protein molecule. Colloidal stability tests (3


Documento: Artículo
Título:Milk protein-vitamin interactions: Formation of beta-lactoglobulin/folic acid nano-complexes and their impactoninvitro gastro-duodenal proteolysis
Autor:Pérez, O.E.; David-Birman, T.; Kesselman, E.; Levi-Tal, S.; Lesmes, U.
Filiación:Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Tecnicas, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Faculty of Biotechnology and oFood Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
Russel Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000, Israel
Palabras clave:β-lactoglobulin; Folic acid; Invitro digestion; Nano-complexes; Nano-particles
Página de inicio:40
Página de fin:47
Título revista:Food Hydrocolloids
Título revista abreviado:Food Hydrocolloids


  • Adank, C., Green, T.J., Skeaff, C.M., Briars, B., Weekly high-dose folic acid supplementation is effective in lowering serum homocysteine concentrations in women (2003) Annals of Nutrition & Metabolism, 47, pp. 55-59
  • Agyei, D., Danquah, M.K., Rethinking food-derived bioactive peptides for antimicrobial and immunomodulatory activities (2012) Trends in Food Science & Technology, 23 (2), pp. 62-69
  • Augustin, M.A., Hemar, Y., Nano- and micro-structured assemblies for encapsulation of food ingredients (2009) Chemical Society Reviews, 38 (4), pp. 902-912
  • Benshitrit, R.C., Levi, C.S., Tal, S.L., Shimoni, E., Lesmes, U., Development of oral food-grade delivery systems: current knowledge and future challenges (2012) Food & Function, 3, pp. 10-21
  • Blanquet, S., Zeijdner, E., Beyssac, E., Meunier, J.P., Denis, S., Havenaar, R., Adynamic artificial gastrointestinal system for studying the behavior of orally administered drug dosage forms under various physiological conditions (2004) Pharmaceutical Research, 21 (4), pp. 585-591
  • Bonazzi, S., Demorais, M.M., Gottarelli, G., Mariani, P., Spada, G.P., Self-assembly and liquid-crystal formation of folic-acid salts (1993) Angewandte Chemie International Edition in English, 32 (2), pp. 248-250
  • Breiteneder, H., Mills, E.N., Molecular properties of food allergens (2005) Journal of Allergy and Clinical Immunology, 115 (1), pp. 14-23
  • Chen, L.Y., Remondetto, G.E., Subirade, M., Food protein-based materials as nutraceutical delivery systems (2006) Trends in Food Science & Technology, 17 (5), pp. 272-283
  • Ciuchi, F., Dinicola, G., Franz, H., Gottarelli, G., Mariani, P., Bossi, M.G.P., Self-recognition and self-assembly of folic-acid salts - columnar liquid-crystalline polymorphism and the column growth-process (1994) Journal of the American Chemical Society, 116 (16), pp. 7064-7071
  • David-Birman, T., Mackie, A., Lesmes, U., Impact of dietary fibers on the properties and proteolytic digestibility of lactoferrin nano-particles (2013) Food Hydrocolloids, 31 (1), pp. 33-41
  • Dickinson, E., Use of nanoparticles and microparticles in the formation and stabilization of food emulsions (2012) Trends in Food Science & Technology, 12 (1), pp. 4-12
  • Dupont, D., Mandalari, G., Molle, D., Jardin, J., Leonil, J., Faulks, R.M., Comparative resistance of food proteins to adult and infant invitro digestion models (2010) Molecular Nutrition & Food Research, 54 (6), pp. 767-780
  • Elkanat, H., Ratnam, M., Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy (2004) Advanced Drug Delivery Reviews, 56, pp. 1067-1084
  • Ghai, R., Falconer, R.J., Collins, B.M., Applications of isothermal titration calorimetry in pure and applied research survey of the literature from 2010 (2012) Journal of Molecular Recognition, 25 (1), pp. 32-52
  • Hambling, S.G., Alpine, A.S.M., Sawyer, L., β-lactoglobulin (1992) Advanced dairy chemistry 1, 1, pp. 141-190. , Elsevier Applied Science, London
  • Hur, S.J., Lim, B.O., Decker, E.A., McClements, D.J., Invitro human digestion models for food applications (2011) Food Chemistry, 125 (1), pp. 1-12
  • Ikeda, S., Morris, V., Nishinari, K., Fine-stranded and particulate aggregates of heat-denatured whey protein visualized by atomic force microscopy (2002) Biomacromolecules, 3, pp. 382-389
  • Jones, O.G., Decker, E.A., McClements, D.J., Comparison of protein-polysaccharide nanoparticle fabrication methods: impact of biopolymer complexation before or after particle formation (2010) Journal of Colloid and Interface Science, 344 (1), pp. 21-29
  • Jones, O.G., Lesmes, U., Dubin, P., McClements, D.J., Effect of polysaccharide charge on formation and properties of biopolymer nanoparticles created by heat treatment of beta-lactoglobulin-pectin complexes (2010) Food Hydrocolloids, 24 (4), pp. 374-383
  • Jones, O.G., McClements, D.J., Recent progress in biopolymer nanoparticle and microparticle formation by heat-treating electrostatic protein-polysaccharide complexes (2011) Advances in Colloid and Interface Science, 167 (1-2), pp. 49-62
  • Kopf-Bolanz, K.A., Schwander, F., Gijs, M., Vergeres, G., Portmann, R., Egger, L., Validation of an invitro digestive system for studying macronutrient decomposition in humans (2012) Journal of Nutrition, 142 (2), pp. 245-250
  • La, V.C., Negri, E., Pelucchi, C., Franceschi, S., Dietary folate and colorectal cancer (2002) International Journal of Cancer, 102, pp. 545-547
  • Lesmes, U., McClements, D.J., Structure-function relationships to guide rational design and fabrication of particulate food delivery systems (2009) Trends in Food Science & Technology, 20 (10), pp. 448-457
  • Lesmes, U., McClements, D.J., Controlling lipid digestibility: response of lipid droplets coated by [beta]-lactoglobulin-dextran Maillard conjugates to simulated gastrointestinal conditions (2012) Food Hydrocolloids, 26 (1), pp. 221-230
  • Liang, L., Subirade, M., Beta-lactoglobulin/folic acid complexes: formation, characterization, and biological implication (2010) Journal of Physical Chemistry B, 114 (19), pp. 6707-6712
  • Liang, L., Subirade, M., Study of the acid and thermal stability of β-lactoglobulin-ligand complexes using fluorescence quenching (2012) Food Chemistry, 132 (4), pp. 2023-2029
  • Liang, L., Tajmir-Riahi, H.A., Subirade, M., Interaction of beta-lactoglobulin with resveratrol and its biological implications (2008) Biomacromolecules, 9 (1), pp. 50-56
  • Liang, L., Tremblay-Hebert, V., Subirade, M., Characterisation of the beta-lactoglobulin/alpha-tocopherol complex and its impact on alpha-tocopherol stability (2011) Food Chemistry, 126 (3), pp. 821-826
  • Livney, Y.D., Milk proteins as vehicles for bioactives (2010) Current Opinion in Colloid & Interface Science, 15 (1-2), pp. 73-83
  • Macierzanka, A., Sancho, A.I., Mills, E.N.C., Rigby, M.N., Mackie, A.R., Emulsification alters simulated gastrointestinal proteolysis of [small beta]-casein and [small beta]-lactoglobulin (2009) Soft Matter, 5 (3), pp. 538-550
  • Macierzanka, A., Sancho, A.I., Mills, E.N.C., Rigby, N.M., Mackie, A.R., Emulsification alters simulated gastrointestinal proteolysis of beta-casein and beta-lactoglobulin (2009) Soft Matter, 5 (3), pp. 538-550
  • Mackie, A., Macierzanka, A., Colloidal aspects of protein digestion (2010) Current Opinion in Colloid & Interface Science, 15 (1-2), pp. 102-108
  • Madureira, A.R., Pereira, C.I., Gomes, A.M.P., Pintado, M.E., Malcata, F.X., Bovine whey proteins - overview on their main biological properties (2007) Food Research International, 40 (10), pp. 1197-1211
  • Madziva, H., Kailasapathy, K., Phillips, M., Evaluation of alginate-pectin capsules in Cheddar cheese as a food carrier for the delivery of folic acid (2006) LWT, 39, pp. 146-151
  • Mandalari, G., Adel-Patient, K., Barkholt, B., Baro, C., Bennett, L., Bublin, M., Invitro digestibility of β-casein and β-lactoglobulin under simulated human gastric and duodenal conditions: a multi-laboratory evaluation (2009) Regulatory Toxicology and Pharmacology, 55 (3), pp. 372-381
  • Mandalari, G., Mackie, A.M., Rigby, N.M., Wickham, M.S.J., Mills, E.N.C., Physiological phosphatidylcholine protects bovine beta-lactoglobulin from simulated gastrointestinal proteolysis (2009) Molecular Nutrition & Food Research, 53, pp. S131-S139
  • Matalanis, A., Jones, O.G., McClements, D.J., Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds (2011) Food Hydrocolloids, 25 (8), pp. 1865-1880
  • McClements, D.J., (2005) Food Emulsions: Principles, practice, and techniques, , CRC Press, Boca Raton, FL
  • Miller, A.L., The methionine-homocysteine cycle and its effects on cognitive deseases (2003) Alternative Medicine Review, 8, pp. 7-19
  • Monaco, H.L., Zanotti, G., Spadon, P., Bolognesi, M., Sawyer, L., Eliopoulos, E.E., Crystal structure of the trigonal form of bovine beta-lactoglobulin and its complex with retinol at 2.5A resolution (1987) Journal of Molecular Biology, 197, pp. 695-706
  • Motkar, G., Lonare, M., Patil, O., Mohanty, S., Self-assembly of folic acid in aqueous media (2013) Aiche Journal, 59 (4), pp. 1360-1368
  • Nagpal, R., Behare, P., Rana, R., Kumar, A., Kumar, M., Arora, S., Bioactive peptides derived from milk proteins and their health beneficial potentials: an update (2011) Food & Function, 2 (1), pp. 18-27
  • Nygren-Babol, L., Landtröm Karonem, K., The effect of different folate forms on denaturation of bovine folate binding protein (2009) International Dairy Journal, 19, pp. 437-442
  • Papiz, M.Z., Sawyer, L., Eliopoulos, E.E., North, A.C.T., Findlay, J.B.C., Sivaprasadarao, R., The structure of b-lactoglobulin and its similarity to plasma retinol-binding protein (1986) Nature, 324, pp. 383-385
  • Perez, M.D., Calvo, M., Interaction of beta-lactoglobulin with retinol and fatty-acids and its role as a possible biological function for this protein - a review (1995) Journal of Dairy Science, 78 (5), pp. 978-988
  • Rabiller-Baudry, M., Bouguen, A., Lucas, D., Chaufer, B., Physico-chemical characterization of proteins by capillary electrophoresis (1998) Journal of Chromatography B: Biomedical Sciences and Applications, 706 (1), pp. 23-32
  • Relkin, P., Shukat, R., Food protein aggregates as vitamin-matrix carriers: impact of processing conditions (2012) Food Chemistry, 134 (4), pp. 2141-2148
  • Reynolds, E.H., Folic acid, ageing, depression, and dementia (2002) BMJ, 324, pp. 1512-1515
  • Roesch, R., Cox, S., Compton, S., Happek, U., Corredig, M., κ-Carrageenan and β-lactoglobulin interactions visualized by atomic force microscopy (2004) Food Hydrocolloids, 18, pp. 429-439
  • Shani-Levi, C., Levi-Tal, S., Lesmes, U., Comparative performance of milk proteins and their emulsions under dynamic invitro adult and infant gastric digestion (2013) Food Hydrocolloids, 32 (2), pp. 349-357
  • Shimoni, E., Using AFM to explore food nanostructure (2008) Current Opinion in Colloid & Interface Science, 13 (5), pp. 368-374
  • Sneharani, A.H., Karakkat, J.V., Singh, S.A., Rao, A.G.A., Interaction of curcumin with beta-lactoglobulin-stability, spectroscopic analysis, and molecular modeling of the complex (2010) Journal of Agricultural and Food Chemistry, 58 (20), pp. 11130-11139
  • Stepanek, P., Data anlaysis in light scattering (1993) Dynamic light scattering. The methods and some applications, pp. 177-241. , Clarendon Press, London, UK, W. Brown (Ed.)
  • Velikov, K.P., Pelan, E., Colloidal delivery systems for micronutrients and nutraceuticals (2008) Soft Matter, 4 (10), pp. 1964-1980
  • de Wit, J.N., Thermal behaviour of bovine beta-lactoglobulin at temperatures up to 150 °C. A review (2009) Trends in Food Science & Technology, 20, pp. 27-34
  • Yan, Y.F., Seeman, D., Zheng, B.Q., Kizilay, E., Xu, Y.S., Dubin, P.L., PH-dependent aggregation and disaggregation of native beta-lactoglobulin in low salt (2013) Langmuir, 29 (14), pp. 4584-4593
  • Zimet, P., Livney, Y.D., Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for [omega]-3 polyunsaturated fatty acids (2009) Food Hydrocolloids, 23 (4), pp. 1120-1126


---------- APA ----------
Pérez, O.E., David-Birman, T., Kesselman, E., Levi-Tal, S. & Lesmes, U. (2014) . Milk protein-vitamin interactions: Formation of beta-lactoglobulin/folic acid nano-complexes and their impactoninvitro gastro-duodenal proteolysis. Food Hydrocolloids, 38, 40-47.
---------- CHICAGO ----------
Pérez, O.E., David-Birman, T., Kesselman, E., Levi-Tal, S., Lesmes, U. "Milk protein-vitamin interactions: Formation of beta-lactoglobulin/folic acid nano-complexes and their impactoninvitro gastro-duodenal proteolysis" . Food Hydrocolloids 38 (2014) : 40-47.
---------- MLA ----------
Pérez, O.E., David-Birman, T., Kesselman, E., Levi-Tal, S., Lesmes, U. "Milk protein-vitamin interactions: Formation of beta-lactoglobulin/folic acid nano-complexes and their impactoninvitro gastro-duodenal proteolysis" . Food Hydrocolloids, vol. 38, 2014, pp. 40-47.
---------- VANCOUVER ----------
Pérez, O.E., David-Birman, T., Kesselman, E., Levi-Tal, S., Lesmes, U. Milk protein-vitamin interactions: Formation of beta-lactoglobulin/folic acid nano-complexes and their impactoninvitro gastro-duodenal proteolysis. Food Hydrocolloids. 2014;38:40-47.