Spotti, M.J.; Martinez, M.J.; Pilosof, A.M.R.; Candioti, M.; Rubiolo, A.C.; Carrara, C.R. "Rheological properties of whey protein and dextran conjugates at different reaction times" (2014) Food Hydrocolloids. 38:76-84
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Protein/polysaccharide conjugates have been widely studied because of their good emulsifying properties and their potential use as food ingredients. However, there is little information about the use of these conjugates in gel systems. Rheological properties of conjugates of whey protein isolate (WPI) and dextran (DX) of 15kDa obtained by Maillard reaction (RM) at different incubation times (2, 5 and 9 days) were studied. Conjugation was confirmed by electrophoresis, conformational changes were studied by DSC and rheological properties were determined by means of an oscillatory rheometer with a temperature ramp ranging from 25 to 90°C. After each rheological measure, a mechanical spectrum from 0.01 to 10Hz was also obtained. Electrophoresis indicated the presence of WPI/DX conjugates for all incubation days, though their molecular weight could not be determined. Both, time and temperature of gelation (G' G″ crossover), increased in WPI/DX conjugate systems compared with WPI without DX (same time of incubation). However, these parameters decreased in WPI/DX mixed system. G' values at 25°C decreased in WPI/DX conjugates and increased in WPI/DX mixed system with respect to WPI alone. Frequency sweeps showed that all gels were stable. © 2013 Elsevier Ltd.


Documento: Artículo
Título:Rheological properties of whey protein and dextran conjugates at different reaction times
Autor:Spotti, M.J.; Martinez, M.J.; Pilosof, A.M.R.; Candioti, M.; Rubiolo, A.C.; Carrara, C.R.
Filiación:Grupo de Biocoloides, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Lactología Industrial (INLAIN), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
Idioma: Inglés
Palabras clave:Dextran; Maillard reaction; Rheological properties; Whey proteins
Página de inicio:76
Página de fin:84
Título revista:Food Hydrocolloids
Título revista abreviado:Food Hydrocolloids


  • Akhtar, M., Dickinson, E., Whey protein-maltodextrin conjugates as emulsifying agents: an alternative to gum arabic (2007) Food Hydrocolloids, 21 (4), pp. 607-616
  • Ashie, I.N., Lanier, T.C., High pressure effects on gelation of surimi and turkey breast muscle enhanced by microbial transglutaminase (1999) Journal of Food Science, 64, pp. 704-708
  • Avanza, M.V., Puppo, M.C., Añón, M.C., Rheological characterization of amaranth protein gels (2005) Food Hydrocolloids, 19, pp. 889-898
  • Baeza, R., Pilosof, A., Mixed biopolymer gels systems of β-lactoglobulin and non-gelling gum (2001) Foods colloids - Fundamentals of formulation, pp. 392-403. , The Royal Society of Chemistry, Cambridge, E. Dickinson, R. Miller (Eds.)
  • Baeza, R.I., Pilosof, A.M.R., Calorimetric studies of thermal denaturation of β-lactoglobulin in the presence of polysaccharides (2002) LWT - Food Science and Technology, 35, pp. 393-399
  • Barbut, S., Foegeding, E.A., Ca21-induced gelation of pre-heated whey protein isolate (1993) Journal of Food Science, 58, pp. 867-871
  • Boye, J.I., Ma, C.-Y., Harwalkar, V.R., Thermal denaturation and coagulation of proteins (1997) Food proteins and their applications, , Marcel Dekker Inc., New York, S. Damadoran, A. Paraf (Eds.)
  • Bryant, C.M., McClements, D.J., Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey (1998) Trends in Food Science and Technology, 9, pp. 143-151
  • Capron, I., Nicolai, T., Durand, D., Heat induced aggregation and gelation of β-lactoglobulin in the presence of κ-carrageenan (1999) Food Hydrocolloids, 13 (1), pp. 1-5
  • Cheftel, J.C., Cuq, J.L., Lorient, D., Modificaciones de las proteínas (1989) Proteínas alimentarias. Bioquímica. Propiedades funcionales. Valor nutritivo. Modificaciones químicas, pp. 304-309. , Editorial ACRIBIA S.A., Zaragoza España
  • Chevalier, F., Chobert, J.-M., Genot, C., Haertlé, T., Scavenging of free radicals antimicrobial and cytotoxic activities of the Maillard reaction products of β-lactoglobulin glycated with several sugars (2001) Journal of Agricultural and Food Chemistry, 49, pp. 5031-5038
  • Choi, S.J., Kim, H.J., Park, K.H., Moon, T.W., Molecular characteristics of ovalbumin-dextran conjugates formed through the Maillard reaction (2005) Food Chemistry, 92, pp. 93-99
  • Darewicz, M., Dziuba, J., The effect of glycosylation on emulsifying and structural properties of β-casein (2001) Nahrung, 45, pp. 15-20
  • Dickinson, E., Izgi, E., Foam stabilization by protein-polysaccharide complexes (1996) Colloids and Surfaces A, 113, pp. 191-201
  • Diftis, N., Kiosseoglou, V., Improvement of emulsifying properties of soybean protein isolate by conjugation with carboxymethyl cellulose (2003) Food Chemistry, 81, pp. 1-6
  • Diftis, N., Kiosseoglou, V., Physicochemical properties of dry-heated soy protein isolate-dextran mixtures (2006) Food Chemistry, 96, pp. 228-233
  • Dunlap, C.A., CÔté, G.L., β-Lactoglobulin-dextran conjugates: effect of polysaccharide size on emulsion stability (2005) Journal of Agricultural and Food Chemistry, 53, pp. 419-423
  • Einhorn-Stoll, U., Ulbrich, M., Sever, S., Kunzek, H., Formation of milk protein pectin conjugates with improved emulsifying properties by controlled dry heating (2005) Food Hydrocolloids, 19, pp. 329-340
  • Gerrard, J.A., Brown, P.K., Fayle, S.E., Maillard crosslinking of food proteins II: the reactions of gluteraldehyde, formaldehyde and glyceraldehydes with wheat proteins invitro and in situ (2003) Food Chemistry, 80, pp. 35-43
  • Goloberg, T., Weijng, C., Melpomeni, M., Advanced glycoxidation end products in commonly consumed foods (2004) Journal of the American Dietetic Association, 104, pp. 1287-1291
  • Hattori, M., Nagasawa, K., Ametani, A., Kaminogawa, S., Takahashi, K., Functional changes in β-lactoglobulin by conjugation with carboxymethyl dextran (1994) Journal of Agricultural and Food Chemistry, 42, pp. 2120-2125
  • Hattori, M., Ogino, A., Nakai, H., Takahashi, K., Functional improvement of β-lactoglobulin by conjugating with alginate lyase-lysate (1997) Journal of Agricultural and Food Chemistry, 45, pp. 703-708
  • Jimenez-Castaño, L., Lópes-Fandiño, R., Olano, A., Villamiel, M., Study on β-lactoglobulin glycosylation with dextran, effect on solubility and heat stability (2005) Food Chemistry, 93, pp. 689-695
  • Katayama, S., Shima, J., Saeki, H., Solubility improvement of shellfish muscle proteins by reaction with glucose and its soluble state in low-ionic strength medium (2002) Journal of Agricultural and Food Chemistry, 50, pp. 4327-4332
  • Kato, A., Industrial applications of Maillard-type protein-polysaccharide conjugates (2002) Journal of Food Science and Technology, 8, pp. 193-199
  • Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685
  • Le Bon, C., Nicolai, T., Durand, D., Growth and structure of aggregates of heat denatured β-lactoglobulin (1999) International Journal of Food Science and Technology, 34, pp. 451-465
  • Liu, J., Ru, Q., Ding, Y., Glycation a promising method for food protein modification: physicochemical properties and structure, a review (2012) Food Research International, 49, pp. 170-183
  • Martinez, M.J., Farías, M.E., Pilosof, A.M.R., The dynamics of heat gelation of casein glycomacropeptide-β-lactoglobulin mixtures as affected by interactions in the aqueous phase (2010) International Dairy Journal, 20, pp. 580-588
  • McClements, D.J., Keogh, M.K., Physical properties of coldsetting gels formed from heat-denatured whey protein isolate (1995) Journal of the Science of Food and Agriculture, 69, pp. 7-14
  • McGookin, B.J., Augustin, M.-A., Antioxidant activity of casein and Maillard reaction products from casein-sugar mixtures (1991) Journal of Dairy Research, 58, pp. 313-320
  • Medrano, A., Abirached, C., Panizzolo, L., Moyna, P., Añón, M.C., The effect of glycation on foam and structural properties of β-lactoglobulin (2009) Food Chemistry, 113, pp. 127-133
  • Miller, A., Gerrard, J., The Maillard reaction and food protein crosslinking (2005) Progress in Food Biopolymer Research, 1, pp. 69-86
  • Nakamura, S., Ogawa, M., Nakai, S., Kato, A., Kitts, D., Antioxidant activity of a Maillard-type phosvitin-galactomannan conjugate with emulsifying properties and heat stability (1998) Journal of Agricultural and Food Chemistry, 46, pp. 3958-3963
  • Oliver, C.M., Melton, L.D., Stanley, R.A., Creating protein with novel functionality via the Maillard reaction: a review (2006) Critical Review in Food Science and Nutrition, 46, pp. 337-350
  • Ordoñez Pereda, J.A., Cambero Rodriguez, M.S., Fernandez Alvarez, L., García de Fernando Miguillón, G.D., de la Hoz Perales, L., Selgas Certero, M.D., Carbohidratos (1998) Tecnología de los alimentos, 1, pp. 86-91. , Editorial SINTESIS S.A., Madrid España, J.A. Ordoñez Pereda (Ed.) Componentes de los alimentos procesos
  • Ould Eleya, M.M., Turgeon, S.L., Rheology of κ-carrageenan and β-lactoglobulin mixed gels (2000) Food Hydrocolloids, 14, pp. 29-40
  • Renkema, J.M.S., Van Vliet, T., Heat-induced gel formation by soy proteins at neutral pH (2002) Journal of Agricultural and Food Chemistry, 50, pp. 1569-1573
  • Ross, Y., Karel, M., Phase transitions of mixtures of amorphous polysaccharides and sugars (1991) Biotechnology Progress, 7, pp. 49-53
  • Sato, R., Sawabe, T., Kishimura, H., Hayashi, K., Saeki, H., Preparation of neoglycoprotein from carp myofibrillar protein and alginate oligosaccharide: improved solubility in low ionic strength medium (2000) Journal of Agricultural and Food Chemistry, 48, pp. 17-21
  • Shepherd, R., Robertson, A., Ofman, D., Dairy glycoconjugate emulsifiers: casein-maltodextrins (2000) Food Hydrocolloids, 14, pp. 281-286
  • Spotti, M.J., Perduca, M., Piagentini, A., Santiago, L., Rubiolo, A., Carrara, C., Gel mechanical properties of milk whey protein-dextran conjugates obtained by Maillard reaction (2013) Food Hydrocolloids, 31 (1), pp. 26-32
  • Spotti, M.J., Santiago, L.G., Rubiolo, A.C., Carrara, C.R., Mechanical and microstructural properties of milk whey protein/espina corona gum mixed gels (2012) LWT - Food Science and Technology, 48, pp. 69-74
  • Stading, M., Hermansson, A.M., Viscoelastic behaviour of β-lactoglobulin structures (1990) Food Hydrocolloids, 4 (2), pp. 121-135
  • Sun, W., Yu, S., Yang, X., Wang, J., Zhang, J., Zhang, Y., Study on the rheological properties of heat-induced whey protein isolate-dextran conjugate gel (2011) Food Research International, 44, pp. 3259-3263
  • Tavares, C., Lopes da Silva, J.A., Rheology of galactomannan-whey protein mixed systems (2003) International Dairy Journal, 13, pp. 699-706
  • Tavares, C., Monteiro, S.R., Moreno, N., Lopes da Silva, J.A., Does the branching degree of galactomannans influence their effect on whey protein gelation? (2005) Colloids and Surfaces A, Physicochemical and Engineering Aspects, pp. 213-219
  • Turgeon, S.L., Beaulieu, M., Schmitt, C., Sanchez, C., Protein-polysaccharide interactions: phase-ordering kinetics, thermodynamic and structural aspects (2003) Current Opinion in Colloid and Interface Science, 8, pp. 401-414
  • Usman, I., Hosono, A., Antimutagenic activity of Maillard reaction products against mutagenic heated tauco (1998) Italian Journal of Food Science, 9, pp. 267-276
  • Verheul, M., Pedersen, J.S., Roefs, S.P.F.M., de Kruif, K.G., Association behavior of native β-lactoglobulin (1999) Biopolymers, 49, pp. 11-20
  • Xu, C., Yang, X., Yu, J., Qi, J., Guo, R., Sun, W., The effect of glycosylation with dextran chains of differing lengths on the thermal aggregation of β-conglycinin and glycinin (2010) Food Research International, 43 (9), pp. 2270-2276
  • Zacharius, R., Zel, L.T., Morrison, J., Woodlock, J., Glycoprotein staining following electrophoresis on acrylamide gels polyacrylamide (1968) Analytical Biochemistry, 30 (1), pp. 148-152
  • Zhu, D., Damodaran, S., Lucey, J.A., Physicochemical and emulsifying properties of whey protein isolate (WPI)-dextran conjugates produced in aqueous solution (2010) Journal of Agricultural and Food Chemistry, 58, pp. 2988-2994


---------- APA ----------
Spotti, M.J., Martinez, M.J., Pilosof, A.M.R., Candioti, M., Rubiolo, A.C. & Carrara, C.R. (2014) . Rheological properties of whey protein and dextran conjugates at different reaction times. Food Hydrocolloids, 38, 76-84.
---------- CHICAGO ----------
Spotti, M.J., Martinez, M.J., Pilosof, A.M.R., Candioti, M., Rubiolo, A.C., Carrara, C.R. "Rheological properties of whey protein and dextran conjugates at different reaction times" . Food Hydrocolloids 38 (2014) : 76-84.
---------- MLA ----------
Spotti, M.J., Martinez, M.J., Pilosof, A.M.R., Candioti, M., Rubiolo, A.C., Carrara, C.R. "Rheological properties of whey protein and dextran conjugates at different reaction times" . Food Hydrocolloids, vol. 38, 2014, pp. 76-84.
---------- VANCOUVER ----------
Spotti, M.J., Martinez, M.J., Pilosof, A.M.R., Candioti, M., Rubiolo, A.C., Carrara, C.R. Rheological properties of whey protein and dextran conjugates at different reaction times. Food Hydrocolloids. 2014;38:76-84.