Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Aquaporins (AQPs) represent a family of channel proteins that transport water and/or small solutes across cell membranes in the three domains of life. In all previous phylogenetic analysis of aquaporin, trees constructed using proteins with very low amino acid identity (< 15%) were incongruent with rRNA data. In this work, restricting the evolutionary study of aquaporins to proteins with high amino acid identity (> 25%), we showed congruence between AQPs and organismal trees. On the basis of this analysis, we defined 19 orthologous gene clusters in flowering plant species (3 PIP-like, 7 TIP-like, 6 NIP-like and 3 SIP-like). We described specific conserved motifs for each subfamily and each cluster, which were used to develop a method for automatic classification. Analysis of amino acid identity between orthologous monocotyledon and dicotyledon AQPs from each cluster, suggested that PIPs are under high evolutionary constraint. The phylogenetic analysis allowed us the assignment of orthologous aquaporins for very distant animal lineages (tetrapods-fishes). We also demonstrated that the location of all vertebrate AQPs in the ortholog clusters could be predicted by comparing their amino acid identity with human AQPs. We defined four AQP subfamilies in animals: AQP1-like, AQP8-like, AQP3-like and AQP11-like. Phylogenetic analysis showed that the four animal AQPs subfamilies are related with PIP-like, TIP-like, NIP-like and SIP-like subfamilies, respectively. Thus, this analysis would allow the prediction of individual AQPs function on the basis of orthologous genes from Arabidopsis thaliana and Homo sapiens. © 2012 Elsevier B.V.

Registro:

Documento: Artículo
Título:New insight into the evolution of aquaporins from flowering plants and vertebrates: Orthologous identification and functional transfer is possible
Autor:Soto, G.; Alleva, K.; Amodeo, G.; Muschietti, J.; Ayub, N.D.
Filiación:Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avda. Rivadavia 1917, C1033AAJ Cuidad Autónoma de Buenos Aires, Argentina
Instituto de Genética Ewald A. Favret, CICVyA, INTA Castelar, De los Reseros S/N C25 (1712), Provincia de Buenos Aires, Argentina
Instituto de Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Vuelta de Obligado 2490 Piso 2, Buenos Aires, C1428ADN, Argentina
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
Palabras clave:Aquaporin; Evolution; Gene transfer; Orthologs; amino acid; aquaporin; aquaporin 1; aquaporin 2; aquaporin 3; aquaporin 4; aquaporin 5; aquaporin 6; aquaporin 8; aquaporin 9; bacterial glycerol transporter; carrier proteins and binding proteins; unclassified drug; amino acid analysis; Arabidopsis; eudicot; flowering; Gallus gallus; gene cluster; gene transfer; grain; Hevea brasiliensis; Hordeum; human; letter; molecular evolution; monocot; mouse; nomenclature; nonhuman; nucleotide sequence; orthology; phylogenetic tree; plant genetics; Populus trichocarpa; priority journal; protein analysis; Rattus norvergicus; Ricinus communis; sequence analysis; soybean; vertebrate; zebra fish; Amino Acid Sequence; Animals; Aquaporins; Biological Evolution; Evolution, Molecular; Humans; Molecular Sequence Data; Phylogeny; Plants; Vertebrates; Water; Animalia; Arabidopsis thaliana; Dicotyledoneae; Homo sapiens; Liliopsida; Magnoliophyta; Pips; Pisces; Tetrapoda; Vertebrata
Año:2012
Volumen:503
Número:1
Página de inicio:165
Página de fin:176
DOI: http://dx.doi.org/10.1016/j.gene.2012.04.021
Título revista:Gene
Título revista abreviado:Gene
ISSN:03781119
CODEN:GENED
CAS:amino acid, 65072-01-7; aquaporin, 215587-75-0; aquaporin 1, 146410-94-8, 149348-86-7; aquaporin 2, 231937-18-1; aquaporin 4, 175960-54-0; Aquaporins; Water, 7732-18-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03781119_v503_n1_p165_Soto

Referencias:

  • Abby, S.S., Tannier, E., Gouy, M., Daubin, V., Detecting lateral gene transfers by statistical reconciliation of phylogenetic forests (2010) BMC Bioinforma., 11, p. 324
  • Alexandersson, E., Danielson, J.A., Rade, J., Moparthi, V.K., Fontes, M., Kjellbom, P., Johanson, U., Transcriptional regulation of aquaporins in accessions of Arabidopsis in response to drought stress (2010) Plant J., 61, pp. 650-660
  • Andersson, J.O., Lateral gene transfer in eukaryotes (2005) Cell. Mol. Life Sci., 62, pp. 1182-1197
  • Ayub, N.D., Pettinari, M.J., Méndez, B.S., López, N.I., Impaired polyhydroxybutyrate biosynthesis from glucose in Pseudomonas sp. 14-3 is due to a defective β-ketothiolase gene (2006) FEMS Microbiol. Lett., 264, pp. 125-131
  • Ayub, N.D., Pettinari, M.J., Méndez, B.S., López, N.I., The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island (2007) Plasmid, 58, pp. 240-248
  • Ayub, N.D., Tribelli, P.M., López, N.I., Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation (2009) Extremophiles, 13, pp. 59-66
  • Bailey, T.L., Elkan, C., Fitting a mixture model by expectation maximization to discover motifs in biopolymers (1994) Proc. Int. Conf. Intell. Syst. Mol. Biol., 2, pp. 28-36
  • Bellati, J., Alleva, K., Soto, G., Vitali, V., Jozefkowicz, C., Amodeo, G., Intracellular pH sensing is altered by plasma membrane PIP aquaporin co-expression (2010) Plant Mol. Biol., 74, pp. 105-118
  • Bertl, A., Kaldenhoff, R., Function of a separate NH3-pore in Aquaporin TIP2;2 from wheat (2007) FEBS Lett., 581, pp. 5413-5417
  • Biela, A., Grote, K., Otto, B., Hoth, S., Hedrich, R., Kaldenhoff, R., The Nicotiana tabacum plasma membrane aquaporin NtAQP1 is mercury-insensitive and permeable for glycerol (1999) Plant J., 18, pp. 565-570
  • Bienert, G.P., Jahn, T.P., Major intrinsic proteins and arsenic transport in plants: new players and their potential roles (2010) Advances in Experimental Medicine and Biology, 679. , Springer, Bienert, Jahn (Eds.) MIPs and Their Role in the Exchange of Metalloids
  • Bienert, G.P., Møller, A.L., Kristiansen, K.A., Schulz, A., Møller, I.M., Schjoerring, J.K., Jahn, T.P., Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes (2007) J. Biol. Chem., 282, pp. 1183-1192
  • Bienert, G.P., Thorsen, M., Schüssler, M.D., Nilsson, H.R., Wagner, A., Tamás, M.J., Jahn, T.P., A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH) 3 and Sb(OH) 3 across membranes (2008) BMC Biol., 6, p. 26
  • Bots, M., Feron, R., Uehlein, N., Weterings, K., Kaldenhoff, R., Mariani, T., PIP1 and PIP2 aquaporins are differentially expressed during tobacco anther and stigma development (2005) J. Exp. Bot., 56, pp. 113-121
  • Campanella, J.J., Bitincka, L., Smalley, J., MatGAT: An application that generates similarity/identity matrices using protein or DNA sequences (2003) BMC Bioinforma., 4, pp. 29.1
  • Cavez, D., Hachez, C., Chaumont, F., Maize black Mexican sweet suspension cultured cells are a convenient tool for studying aquaporin activity and regulation (2009) Plant Signal. Behav., 4, pp. 890-892
  • Chaumont, F., Barrieu, F., Wojcik, E., Chrispeels, M.J., Jung, R., Aquaporins constitute a large and highly divergent protein family in maize (2001) Plant Physiol., 125, pp. 1206-1215
  • Danielson, J.A., Johanson, U., Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens (2008) BMC Plant Biol., 8, p. 45
  • Danielson, J.A., Johanson, U., Phylogeny of major intrinsic proteins (2010) Adv. Exp. Med. Biol., 679, pp. 19-31
  • Dean, R.M., Rivers, R.L., Zeidel, M.L., Roberts, D.M., Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties (1999) Biochemistry, 38, pp. 347-353
  • Delsuc, F., Brinkmann, H., Philippe, H., Phylogenomics and the reconstruction of the tree of life (2005) Nat. Rev. Genet., 6, pp. 361-375
  • Dynowski, M., Mayer, M., Moran, O., Ludewig, U., Molecular determinants of ammonia and urea conductance in plant aquaporin homologs (2008) FEBS Lett., 582, pp. 2458-2462
  • Echevarria, M., Windhager, E.E., Tate, S.S., Frindt, G., Cloning and expression of AQP3, a water channel from medullary collecting duct of rat kidney (1994) PNAS, 91, pp. 10997-11001
  • Endeward, V., Musa-Aziz, R., Cooper, G.J., Chen, L.M., Pelletier, M.F., Virkki, L.V., Supuran, C.T., Gros, G., Evidence that aquaporin 1 is a major pathway for CO 2 transport across the human erythrocyte membrane (2006) FASEB J., 20, pp. 1974-1981
  • Fetter, K., Van Wilder, V., Moshelion, M., Chaumont, F., Interactions between plasma membrane aquaporins modulate their water channel activity (2004) Plant Cell., 16, pp. 215-228
  • Fushimi, K., Uchida, S., Hara, Y., Hirata, Y., Marumo, F., Sasaki, S., Cloning and expression of apical membrane water channel of rat kidney collecting tubule (1993) Nature, 361, pp. 549-552
  • Gena, P., Fanelli, E., Brenner, C., Svelto, M., Calamita, G., News and views on mitochondrial water transport (2009) Front. Biosci., 14, pp. 4189-4198
  • Gupta, A.B., Sankararamakrishnan, R., Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective (2009) BMC Plant Biol., 9, p. 134
  • Hall, T.A., BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucl. Acids Symp. Ser., 41, pp. 95-98
  • Hamdi, M., Sanchez, M.A., Beene, L.C., Liu, Q., Landfear, S.M., Rosen, B.P., Liu, Z., Arsenic transport by zebrafish aquaglyceroporins (2009) BMC Mol. Biol., 10, p. 104
  • Hasegawa, M., Thorne, J.L., Kishino, H., Time scale of eutherian evolution estimated without assuming a constant rate of molecular evolution (2003) Genes Genet. Syst., 78, pp. 267-283
  • Heymann, J.B., Engel, A., Aquaporins: phylogeny, structure phylogeny, Structure, and physiology of water channels (1999) News Physiol. Sci., 14, pp. 187-193
  • Holm, L.M., Jahn, T.P., Møller, A.L., Schjoerring, J.K., Ferri, D., Klaerke, D.A., Zeuthen, T., NH3 and NH4+ permeability in aquaporin-expressing Xenopus oocytes (2005) Pflugers Arch., 450, pp. 415-428
  • Hoshiyama, D., Kuma, K., Miyata, T., Extremely reduced evolutionary rate of TATA-box binding protein in higher vertebrates and its evolutionary implications. Gene. 280:169-173. Ishibashi K. 2009. New members of mammalian aquaporins: AQP10-AQP12 (2001) Handb. Exp. Pharmacol., 190, pp. 251-262
  • Isayenkov, S.V., Maathuis, F.J., The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake (2008) FEBS Lett., 582, pp. 1625-1628
  • Ishibashi, K., Aquaporin superfamily with unusual npa boxes: S-aquaporins (superfamily, sip-like and subcellular-aquaporins) (2006) Cell. Mol. Biol., 52, pp. 20-27
  • Ishibashi, K., New members of mammalian aquaporins: AQP10-AQP12 (2009) Handb. Exp. Pharmacol., 190, pp. 251-262
  • Ishibashi, K., Sasaki, S., Fushimi, K., Uchida, S., Kuwahara, M., Marumo, F., Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells (1994) PNAS, 91, pp. 6269-6273
  • Ishibashi, K., Kuwahara, M., Gu, Y., Kageyama, Y., Tohsaka, A., Suzuki, F., Marumo, F., Sasaki, S., Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea (1997) J. Biol. Chem., 272, pp. 20782-20786
  • Ishibashi, K., Morinaga, T., Kuwahara, M., Sasaki, S., Imai, M., Cloning and identification of a new member of water channel (AQP10) as an aquaglyceroporin (2002) Biochim. Biophys. Acta, 1576, pp. 335-340
  • Ishibashi, K., Hara, S., Kondo, S., Aquaporin water channels in mammals (2009) Clin. Exp. Nephrol., 13, pp. 107-117
  • Ishikawa, F., Suga, S., Uemura, T., Sato, M.H., Maeshima, M., Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana (2005) FEBS Lett., 579, pp. 5814-5820
  • Itoh, T., Rai, T., Kuwahara, M., Ko, S.B., Uchida, S., Sasaki, S., Ishibashi, K., Identification of a novel aquaporin, AQP12, expressed in pancreatic acinar cells (2005) Biochem. Biophys. Res. Commun., 330, pp. 832-838
  • Jahn, T.P., Møller, A.L., Zeuthen, T., Holm, L.M., Klaerke, D.A., Mohsin, B., Kühlbrandt, W., Schjoerring, J.K., Aquaporin homologues in plants and mammals transport ammonia (2004) FEBS Lett., 574, pp. 31-36
  • Johanson, U., Gustavsson, S., A new subfamily of major intrinsic proteins in plants (2002) Mol. Biol. Evol., 19, pp. 456-461
  • Johanson, U., Karlsson, M., Johansson, I., Gustavsson, S., Sjovall, S., Fraysse, L., Weig, A.R., Kjellbom, P., The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants (2001) Plant Physiol., 126, pp. 1358-1369
  • Kadouri, D., Jurkevitch, E., Okon, Y., Castro-Sowinski, S., Ecological and agricultural significance of bacterial polyhydroxyalkanoates (2005) Crit. Rev. Microbiol., 31, pp. 55-67
  • Kaldenhoff, R., Fischer, M., Functional aquaporin diversity in plants (2006) Biochim. Biophys. Acta, 1758, pp. 1134-1141
  • Kamiya, T., Tanaka, M., Mitani, N., Ma, J.F., Maeshima, M., Fujiwara, T., NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana (2009) J. Biol. Chem., 284, pp. 2114-2120
  • Klebl, F., Wolf, M., Sauer, N., A defect in the yeast plasma membrane urea transporter Dur3p is complemented by CpNIP1, a Nod26-like protein from zucchini (Cucurbita pepo L.), and by Arabidopsis thaliana delta-TIP or gamma-TIP (2003) FEBS Lett., 547, pp. 69-74
  • Koonin, E.V., Horizontal gene transfer: the path to maturity (2003) Mol. Microbiol., 50, pp. 725-727
  • Li, W.H., (1997) Molecular Evolution, , Sinauer Associates, Sunderland, MA
  • Li, G.W., Peng, Y.H., Yu, X., Zhang, M.H., Cai, W.M., Sun, W.N., Su, W.A., Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice (2008) J. Plant Physiol., 165, pp. 1879-1888
  • Li, G.W., Zhang, M.H., Cai, W.M., Sun, W.N., Su, W.A., Characterization of OsPIP2;7, a water channel protein in rice (2008) Plant Cell Physiol., 48, pp. 1851-1858
  • Li, R.Y., Ago, Y., Liu, W.J., Mitani, N., Feldmann, J., McGrath, S.P., Ma, J.F., Zhao, F.J., The rice aquaporin Lsi1 mediates uptake of methylated arsenic species (2009) Plant Physiol., 150, pp. 2071-2080
  • Liu, Z., Shen, J., Carbrey, J.M., Mukhopadhyay, R., Agre, P., Rosen, B.P., Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9 (2002) PNAS, 99, pp. 6053-6058
  • Liu, L.H., Ludewig, U., Gassert, B., Frommer, W.B., von Wirén, Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis (2003) Plant Physiol., 133, pp. 1220-1228
  • Liu, Z., Carbrey, J.M., Agre, P., Rosen, B.P., Arsenic trioxide uptake by human and rat aquaglyceroporins (2004) Biochem. Biophys. Res. Commun., 316, pp. 1178-1185
  • Liu, Q., Wang, H., Zhang, Z., Wu, J., Feng, Y., Zhu, Z., Divergence in function and expression of the NOD26-like intrinsic proteins in plants (2009) BMC Genomics, 10, p. 313
  • Loqué, D., Ludewig, U., Yuan, L., von Wirén, N., Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole (2005) Plant Physiol., 137, pp. 671-680
  • Ludewig, U., Dynowski, M., Plant aquaporin selectivity: where transport assays, computer simulations and physiology meet (2009) Cell. Mol. Life Sci., 66, pp. 3161-3175
  • Ma, T., Yang, B., Verkman, A.S., Cloning of a novel water and urea-permeable aquaporin from mouse expressed strongly in colon, placenta, liver, and heart (1997) Biochem. Biophys. Res. Commun., 240, pp. 324-328
  • Ma, T., Song, Y., Gillespie, A., Carlson, E.J., Epstein, C.J., Verkman, A.S., Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels (1999) J. Biol. Chem., 274, pp. 20071-20074
  • Ma, T., Hara, M., Sougrat, R., Verbavatz, J.M., Verkman, A.S., Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3 (2002) J. Biol. Chem., 277, pp. 17147-17153
  • Maeshima, M., Ishikawa, F., ER membrane aquaporins in plants (2008) Pflugers Arch., 456, pp. 709-716
  • Mahdieh, M., Mostajeran, A., Horie, T., Katsuhara, M., Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants (2008) Plant Cell Physiol., 49, pp. 801-813
  • Matsumoto, T., Lian, H.L., Su, W.A., Tanaka, D., Liu, C., Iwasaki, I., Kitagawa, Y., Role of the aquaporin PIP1 subfamily in the chilling tolerance of rice (2009) Plant Cell Physiol., 50, pp. 216-229
  • Maurel, C., Santoni, V., Luu, D.T., Wudick, M.M., Verdoucq, L., The cellular dynamics of plant aquaporin expression and functions (2009) Curr. Opin. Plant Biol., 12, pp. 690-698
  • Mintseris, J., Weng, Z., Structure, function, and evolution of transient and obligate protein-protein interactions (2005) PNAS, 102, pp. 10930-10935
  • Morishita, L., Boult, C., Ebbitt, B., Rambel, M., Fallstrom, K., Gooden, T., Concurrent validity of administering the Geriatric Depression Scale and the physical functioning dimension of the SIP by telephone (1995) J. Am. Geriatr. Soc., 43, pp. 680-683
  • Nakhoul, N.L., Davis, B.A., Romero, M.F., Boron, W.F., Effect of expressing the water channel aquaporin-1 on the CO 2 permeability of Xenopus oocytes (1998) Am. J. Physiol., 271, pp. 543-548
  • Niemietz, C.M., Tyerman, S.D., Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules (2000) FEBS Lett., 465, pp. 110-114
  • Park, J.H., Saier, M.H., Phylogenetic characterization of the MIP family of transmembrane channel proteins (1996) J. Membr. Biol., 153, pp. 171-180
  • Peretó, J., López-García, P., Moreira, D., Phylogenetic analysis of eukaryotic thiolases suggests multiple proteobacterial origins (2005) J. Mol. Evol., 61, pp. 65-74
  • Phillips, A.J., Homology assessment and molecular sequence alignment (2006) Biomed. Inform., 39, pp. 18-33
  • Postaire, O., Tournaire-Roux, C., Grondin, A., Boursiac, Y., Morillon, R., Schäffner, A.R., Maurel, C., A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of Arabidopsis (2010) Plant Physiol., 152, pp. 1418-1430
  • Preston, G.M., Carroll, T.P., Guggino, W.B., Agre, P., Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein (1992) Science, 256, pp. 385-387
  • Quigley, F., Rosenberg, J.M., Shachar-Hill, Y., Bohnert, H.J., From genome to function: the Arabidopsis aquaporins (2002) Genome Biol., 3, p. 1
  • Rehm, B.H., Polyester synthases: natural catalysts for plastics (2003) Biochem. J., 376, pp. 15-33
  • Reizer, J., Reizer, A., Saier, M.H., The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstructed pathway evolution, and proposed functional differentiation of the two repeated halves of the proteins (1993) Crit. Rev. Biochem. Mol. Biol., 28, pp. 235-257
  • Soto, G., Alleva, K., Mazzella, M.A., Amodeo, G., Muschietti, J.P., AtTIP1;3 and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea (2008) FEBS Lett., 582, pp. 4077-4082
  • Soto, G., Fox, R., Ayub, N.D., Alleva, K., Guaimas, F., Erijman, E.J., Mazzella, A., Muschietti, J.P., TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is likely involved in nitrogen remobilization in Arabidopsis thaliana (2010) Plant J., 64, pp. 1038-1047
  • Soto, G., Stritzler, M., Lisi, C., Alleva, K., Pagano, M.E., Ardila, F., Mozzicafreddo, M., Ayub, N.D., Acetoacetyl-CoA thiolase regulates the mevalonate pathway during abiotic stress adaptation (2011) J. Exp. Bot., 62, pp. 5699-5711
  • Takano, J., Wada, M., Ludewig, U., Schaaf, G., von Wirén, N., Fujiwara, T., The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation (2006) Plant Cell., 18, pp. 1498-1509
  • Tamura, K., Dudley, J., Nei, M., Kumar, S., MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 (2007) Mol. Biol. Evol., 24, pp. 1596-1599
  • Tanaka, M., Wallace, I.S., Takano, J., Roberts, D.M., Fujiwara, T., NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis (2008) Plant Cell., 20, pp. 2860-2875
  • Tingaud-Sequeira, A., Calusinska, M., Finn, R.N., Chauvigné, F., Lozano, J., Cerdà, J., The zebrafish genome encodes the largest vertebrate repertoire of functional aquaporins with dual paralogy and substrate specificities similar to mammals (2010) BMC Evol. Biol., 10, p. 38
  • Tsukaguchi, H., Shayakul, C., Berger, U.V., Mackenzie, B., Devidas, S., Guggino, W.M., van Hoek, A.N., Hediger, M.A., Molecular characterization of a broad selectivity neutral solute channel (1998) J. Biol. Chem., 273, pp. 24737-24743
  • Uehlein, N., Otto, B., Hanson, D.T., Fischer, M., McDowell, N., Kaldenhoff, R., Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO 2 permeability (2008) Plant Cell., 20, pp. 648-657
  • Vandeleur, R.K., Mayo, G., Shelden, M.C., Gilliham, M., Kaiser, B.N., Tyerman, S.D., The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine (2009) Plant Physiol., 149, pp. 445-460
  • Verkman, A.S., Mitra, A.K., Structure and function of aquaporin water channels (2000) Am. J. Physiol. Renal. Physiol., 278, pp. 13-28
  • Wallace, I.S., Roberts, D.M., Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter (2004) Plant Physiol., 135, pp. 1059-1068
  • Walz, T., Fujiyoshi, E.A., The AQP structure and functional implications (2009) Handb. Exp. Pharmacol., 190, pp. 31-56
  • Weig, A.R., Jakob, C., Functional identification of the glycerol permease activity of Arabidopsis thaliana NLM1 and NLM2 proteins by heterologous expression in Saccharomyces cerevisiae (2000) FEBS Lett., 481, pp. 293-298
  • Yasui, M., Hazama, A., Kwon, T.H., Nielsen, S., Guggino, W.B., Agre, P., Rapid gating and anion permeability of an intracellular aquaporin (1999) Nature, 402, pp. 184-187
  • Zardoya, R., Phylogeny and evolution of the major intrinsic protein family (2005) Biol. Cell, 97, pp. 397-414
  • Zardoya, R., Villalba, S., A phylogenetic framework for the aquaporin family in eukaryotes (2001) J. Mol. Evol., 52, pp. 391-404
  • Zardoya, R., Ding, X., Kitagawa, Y., Chrispeels, M.J., Origin of plant glycerol transporters by horizontal gene transfer and functional recruitment (2002) PNAS, 99, pp. 14893-14896
  • Zelazny, E., Miecielica, U., Borst, J.W., Hemminga, M.A., Chaumont, F., An N-terminal diacidic motif is required for the trafficking of maize aquaporins ZmPIP2;4 and ZmPIP2;5 to the plasma membrane (2009) Plant J., 57, pp. 346-355

Citas:

---------- APA ----------
Soto, G., Alleva, K., Amodeo, G., Muschietti, J. & Ayub, N.D. (2012) . New insight into the evolution of aquaporins from flowering plants and vertebrates: Orthologous identification and functional transfer is possible. Gene, 503(1), 165-176.
http://dx.doi.org/10.1016/j.gene.2012.04.021
---------- CHICAGO ----------
Soto, G., Alleva, K., Amodeo, G., Muschietti, J., Ayub, N.D. "New insight into the evolution of aquaporins from flowering plants and vertebrates: Orthologous identification and functional transfer is possible" . Gene 503, no. 1 (2012) : 165-176.
http://dx.doi.org/10.1016/j.gene.2012.04.021
---------- MLA ----------
Soto, G., Alleva, K., Amodeo, G., Muschietti, J., Ayub, N.D. "New insight into the evolution of aquaporins from flowering plants and vertebrates: Orthologous identification and functional transfer is possible" . Gene, vol. 503, no. 1, 2012, pp. 165-176.
http://dx.doi.org/10.1016/j.gene.2012.04.021
---------- VANCOUVER ----------
Soto, G., Alleva, K., Amodeo, G., Muschietti, J., Ayub, N.D. New insight into the evolution of aquaporins from flowering plants and vertebrates: Orthologous identification and functional transfer is possible. Gene. 2012;503(1):165-176.
http://dx.doi.org/10.1016/j.gene.2012.04.021