Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In the last few years, a renewed interest in the water gas shift (WGS) reaction at low temperature has arisen due to its application to fuel cells. In this work, a simulation of a fixed bed reactor for this reaction, which forms part of a hydrogen production-purification train for a 10 kW PEM fuel cell using ethanol as the raw material, was carried out. A commercial Cu/Zn/Ba/Al2O3 catalyst was employed and a one-dimensional heterogeneous model was applied for the simulation. The catalyst deactivation due to thermal factors (sintering) was taken into account in the model. Isothermal and adiabatic regimes were analyzed as well. Results of the simulation indicate that the pellet can be considered isothermal but temperature gradients in the film cannot be disregarded. On the other hand, concentration gradients in the film can be ignored but CO profiles are established inside the pellet. Adiabatic operation can be recommended because of its simplicity of operation and construction. The reactor volume is strongly sensitive to the CO outlet concentration at CO levels lower than 6000 ppm. For a 10 kW PEM fuel cell, using adequate pellet size and taking into account the catalyst deactivation, a reactor volume of 0.64 l would be enough to obtain an outlet CO concentration of about 7160 ppm. This concentration value can be handled by the next purification stage, COPROX. © 2005 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Simulation of a low temperature water gas shift reactor using the heterogeneous model/application to a pem fuel cell
Autor:Giunta, P.; Amadeo, N.; Laborde, M.
Filiación:Chemical Engineering Department, School of Engineering, Universidad de Buenos Aires, Pabellon Industrias, Ciudad Univ., 1428 Buenos Aires, Argentina
Palabras clave:Fuel cell; Hydrogen production; WGS reactor design; Catalysts; Computer simulation; Concentration (process); Fuel cells; Mathematical models; Thermal effects; Hydrogen production; Pellets; Reactor volume; Water gas shift (WGS) reactor design; Chemical reactors
Año:2006
Volumen:156
Número:2
Página de inicio:489
Página de fin:496
DOI: http://dx.doi.org/10.1016/j.jpowsour.2005.04.036
Título revista:Journal of Power Sources
Título revista abreviado:J Power Sources
ISSN:03787753
CODEN:JPSOD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03787753_v156_n2_p489_Giunta

Referencias:

  • Zalc, J.M., Löffler, D.G., (2002) J. Power Sources, 111, pp. 58-64
  • Shchibrya, G.G., (1965) Kinet. Katal., 6, p. 1115
  • Goodridge, F., Quazi, H., (1967) Trans. Inst. Chem. Eng., 45, p. 274
  • Bohlboro, H., Jorgensen, M., (1970) Chem. Eng. World, 5, p. 46
  • Leherte, G., Derie, R., Duvigneaud, P.H., (1976) Preparation of Catalysts, , Elsevier Science Publication, Amsterdam
  • Semenova, T., Lyudkovskaya, B., Markina, M., Volynkina, Ya., Cherkasov, G., Sharkina, V., Khitrova, N., Shpiro, G., (1977) Kinet. Katal., 18, p. 1014
  • van Herwijnen, T., de Jong, W., (1980) J. Catal., 63, p. 83
  • van Herwijnen, T., Guczalski, R., de Jong, W., (1980) J. Catal., 63, p. 94
  • Fiolitakis, E., Hofmann, H., (1983) J. Catal., 80, p. 328
  • Chinchen, G.C., Denny, P.J., Parker, D.G., Short, G.D., Spencer, M.S., Waugh, K.C., Whan, D.A., (1984) Proceedings of the ACS Symposium on Methanol and Synthetic Fuels, vol. 29, p. 178
  • Kuijpers, E.G.M., Tjepkema, R.B., van der Wal, W.J.J., (1986) Appl. Catal., 25, p. 139
  • Campbell, C.T., Daube, K.A., (1987) J. Catal., 104, p. 109
  • Salmi, T., Hakkarainen, R., (1989) Appl. Catal., 49, p. 285
  • Colbourn, E., Hadden, R.A., Vandervell, H.D., Waugh, K.C., Webb, G., (1991) J. Catal., 130
  • Fujita, S.I., Usui, M., Takezawa, N., (1994) J. Catal., 134, p. 220
  • Fujita, S.I., Usui, M., Takezawa, N., (1877) Chem. Lett.
  • Ernst, K.H., Campbell, C.T., Moretti, G., (1992) J. Catal., 134, p. 66
  • Amadeo, N.E., Cerella, E.G., Laborde, M.A., Pennella, F., (1995) Latin Amer. Appl. Res., 25, p. 21
  • Amadeo, N.E., Laborde, M.A., (1995) Int. J. Hydrogen Ener., 20 (12), p. 949
  • Ovesen, C.V., Clausen, B.S., Hammershøi, B.S., Steffensen, G., Askgaard, T., Chorkendorff, I., Norskov, J.K., Taylor, P., (1996) J. Catal., 158, p. 170
  • Ayastuy, J.L., Gutiérrez-Ortiz, M.A., González-Marcos, J.A., Aranzabal, A., González-Velasco, J.R., (2005) Ind. Eng. Chem. Res., 44, p. 41
  • Aparicio, M.L., Laborde, M.A., Amadeo, N.E., (1996) Inform. Tecnol., 7, p. 1
  • Chocrón, M., Raffo Calderón, M.C., Amadeo, N., Laborde, M.A., (1996) Chem. Eng. Sci., 51, p. 683
  • González-Velasco, J.R., Gutiérrez-Ortiz, M.A., González-Marcos, J.A., Amadeo, N., Laborde, M.A., (1992) M. Paz. Chem. Eng. Sci., 47, p. 1495
  • Klier, K., Young, Ch., Nunan, J., (1986) I EC Fundam., 25, pp. 36-42
  • Utaka, T., Sekizawa, K., Eguchi, K., (2000) Appl. Catal. A: Gen., 194-195, pp. 21-26
  • Boccuzzi, F., Chiorino, A., Manzoli, M., Andreeva, D., Tabakova, T., Ilieva, L., Idakiev, V., (2002) Catal. Today, 75, pp. 169-175
  • Tabakova, T., Idakiev, V., Andreeva, D., Mitov, I., (2000) Appl. Catal. A: Gen., 202, pp. 91-97
  • Sido, T., Iwasawa, Y., (1993) J. Catal., 141, pp. 71-81
  • Bunluesin, T., Gorte, R., Graham, G., (1998) Appl. Catal. B: Environ., 15, pp. 107-114
  • Li, Y., Fu, Q., Stephanopoulos, M.F., (2000) Appl. Catal. B: Environ., 27, pp. 179-191
  • Hilaire, S., Wang, X., Luo, T., Gorte, R., Wagner, J., (2001) Appl. Catal. A: Gen., 215, pp. 271-278
  • Zalc, J., Sokolovskii, V., Loffler, D., (2002) J. Catal., 206, pp. 169-171
  • Amadeo, N., Laborde, M., (1997) Trends Chem. Eng., 3, p. 159
  • Moulijn, J.A., Tarfaoui, A., Kapteijn, F., (1991) Catal. Today, 11, pp. 1-12
  • Hlavacek, M., Kubicek, V., (1983) Numerical Solutions of Non-linear Boundary Value Problems with Applications, , Prentice-Hall
  • Kim, D.H., Lee, J., (2004) Chem. Eng. Sci., 59, pp. 2253-2263
  • Elnashaie, S.S.E.H., Elshishini, S.S., (1993) Modelling, Simulation and Optimization of Industrial Fixed Bed Catalytic Reactors, , Gordon and Breach Science Publishers
  • Rase, H.F., (1977) Chemical Reactor Design for Process Plants, , John Wiley and Sons
  • Mariño, F., Descorme, C., Duprez, D., (2004) Appl. Catal. B: Environ., 54, p. 59
  • Mariño, F., Descorme, C., Duprez, D., (2005) Appl. Catal. B: Environ., 58, p. 175;

Citas:

---------- APA ----------
Giunta, P., Amadeo, N. & Laborde, M. (2006) . Simulation of a low temperature water gas shift reactor using the heterogeneous model/application to a pem fuel cell. Journal of Power Sources, 156(2), 489-496.
http://dx.doi.org/10.1016/j.jpowsour.2005.04.036
---------- CHICAGO ----------
Giunta, P., Amadeo, N., Laborde, M. "Simulation of a low temperature water gas shift reactor using the heterogeneous model/application to a pem fuel cell" . Journal of Power Sources 156, no. 2 (2006) : 489-496.
http://dx.doi.org/10.1016/j.jpowsour.2005.04.036
---------- MLA ----------
Giunta, P., Amadeo, N., Laborde, M. "Simulation of a low temperature water gas shift reactor using the heterogeneous model/application to a pem fuel cell" . Journal of Power Sources, vol. 156, no. 2, 2006, pp. 489-496.
http://dx.doi.org/10.1016/j.jpowsour.2005.04.036
---------- VANCOUVER ----------
Giunta, P., Amadeo, N., Laborde, M. Simulation of a low temperature water gas shift reactor using the heterogeneous model/application to a pem fuel cell. J Power Sources. 2006;156(2):489-496.
http://dx.doi.org/10.1016/j.jpowsour.2005.04.036