Artículo

Llansola Portolés, M.J.; David Gara, P.M.; Kotler, M.L.; Bertolotti, S.; San Román, E.; Rodríguez, H.B.; Gonzalez, M.C. "Silicon nanoparticle photophysics and singlet oxygen generation" (2010) Langmuir. 26(13):10953-10960
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The effect of molecular oxygen and water on the blue photoluminescence of silicon nanoparticles synthesized by anodic oxidation of silicon wafers and surface functionalized with 2-methyl 2-propenoic acid methyl ester is investigated. The particles of 3 ± 1 nm diameter and a surface composition of Si3O6(C5O2H 8) exhibit room-temperature luminescence in the wavelength range 300-600 nm upon excitation with 300-400 nm light. The luminescence shows vibronic resolution and high quantum yields in toluene suspensions, while a vibronically unresolved spectrum and lower emission quantum yields are observed in aqueous suspensions. The luminescence intensity, though not the spectrum features, depends on the presence of dissolved O2. Strikingly, the luminescence decay time on the order of 1 ns does not depend on the solvent or on the presence of O2. To determine the mechanisms involved in these processes, time-resolved and steady-state experiments are performed. These include low-temperature luminescence, heavy atom effect, singlet molecular oxygen (1O2) phosphorescence detection, reaction of specific probes with 1O2, and determination of O 2 and N2 adsorption isotherms at 77 K. The results obtained indicate that physisorbed O2 is capable of quenching nondiffusively the particle luminescence at room temperature. The most probable mechanism for 1O2 generation involves the energy transfer from an exciton singlet state to O2 to yield an exciton triplet of low energy (<0.98 eV) and 1O2. In aqueous solutions, excited silicon nanoparticles are able to reduce methylviologen on its surface. © 2010 American Chemical Society.

Registro:

Documento: Artículo
Título:Silicon nanoparticle photophysics and singlet oxygen generation
Autor:Llansola Portolés, M.J.; David Gara, P.M.; Kotler, M.L.; Bertolotti, S.; San Román, E.; Rodríguez, H.B.; Gonzalez, M.C.
Filiación:INIFTA, Dpto. Química, UNLP, CC 16 Suc. 4, 1900 La Plata, Argentina
Departamento Química Biológica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, Piso 4, C1428EHA Buenos Aires, Argentina
Fac Cs. Exactas, Físico-Químicas y Naturales, UNRC, Ruta Nac. 36, Km. 601, X5804BYA Río Cuarto, Argentina
INQUIMAE, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, Piso 3, C1428EHA Buenos Aires, Argentina
Palabras clave:Aqueous solutions; Aqueous suspensions; Blue photoluminescence; Emission quantum yield; Functionalized; Heavy atom effects; Low energies; Low-temperature luminescence; Luminescence decay time; Luminescence intensity; Methyl esters; Methylviologen; Photophysics; Physisorbed; Room temperature; Silicon nanoparticles; Singlet molecular oxygen; Singlet oxygen generation; Singlet state; Spectrum features; Surface compositions; Time-resolved; Toluene suspensions; Wavelength ranges; Adsorption; Anodic oxidation; Dissolution; Energy transfer; Esters; Excitons; Gas generators; Luminescence; Molecular oxygen; Nanoparticles; Plasma diagnostics; Semiconducting silicon compounds; Silicon oxides; Suspensions (fluids); Toluene; Silicon wafers; nanoparticle; silicon; singlet oxygen; article; chemistry; infrared spectroscopy; luminescence; nanotechnology; pH; photochemistry; Hydrogen-Ion Concentration; Luminescence; Nanoparticles; Nanotechnology; Photochemistry; Silicon; Singlet Oxygen; Spectroscopy, Fourier Transform Infrared
Año:2010
Volumen:26
Número:13
Página de inicio:10953
Página de fin:10960
DOI: http://dx.doi.org/10.1021/la100980x
Título revista:Langmuir
Título revista abreviado:Langmuir
ISSN:07437463
CODEN:LANGD
CAS:silicon, 7440-21-3; Silicon, 7440-21-3; Singlet Oxygen, 17778-80-2
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v26_n13_p10953_LlansolaPortoles

Referencias:

  • Burda, C., Chen, X., Narayanan, R., El-Sayed, M.A., (2005) Chem. Rev., 105, pp. 1025-1102
  • Mialhe, P., Toufik, H., Tahchi, M., Toufik, N., Tazibt, W., (2008) J. Electron Dev., 6, p. 3
  • Swihart, M.T., (2007) Nanotechnology in Biology and Medicine, Methods, Devices, and Applications, 4. , CRC Press: Boca Raton, USA
  • Rioux, D., Laferrière, M., Douplik, A., (2009) J. Biomed. Opt., 14, p. 5
  • Timoshenko, V., (2009) Sensors for Environment, Health and Security, pp. 125-129. , M.-I. Baraton: Dordrecht, Germany
  • Kovalev, D., Fujii, M., (2005) Adv. Mater., 17, pp. 2531-2544
  • Gara, P.M.D., Bosio, G.N., Arce, V.B., Poulsen, L., Ogilby, P.R., Giudici, R., Gonzalez, M.C., Mártire, D.O., (2009) Photochem. Photobiol., 85, pp. 686-692
  • Braslavsky, S.E., Müller, M., Mártire, D.O., Pörting, S., Bertolotti, S.G., Chakravorti, S., Koç-Weier, G., Schaffner, K., (1997) J. Photochem. Photobiol. B, 40, pp. 191-198
  • Llansola Portolés, M.J., Rodriguez Nieto, F., Soria, D.B., Amalvy, J.I., Peruzzo, P.J., Mártire, D.O., Kotler, M., Gonzalez, M.C., (2009) J. Phys. Chem. C, 113, pp. 13694-13702
  • Gas Encyclopedia 2010, , http://encyclopedia.airliquide.com/encyclopedia.asp, Air Liquide, Elsevier. Accessible on the Web
  • Murzin, D.Y., (2007) React. Kinet. Catal. Lett., 91, pp. 37-43
  • Tutorskii, I.A., Belogorokhov, A.I., Ishchenko, A.A., Storozhenko, P.A., (2005) Colloid J., 67, pp. 491-496
  • Miyamoto, Y., Oshiyama, A., (1990) Phys. Rev. B, 41, p. 12680
  • Nagatomi, T., Harada, Y., Niwa, M., Takai, Y., Shimizu, R., (1999) Surf. Interface Anal., 27, pp. 776-782
  • Wang, Y., Dierre, B., Sekiguchi, T., Yao, Y.Z., Yuan, X.L., Xu, F.J., Shen, B., (2009) J. Vac. Sci. Technol., A, 27, pp. 611-613
  • Gross, E., Kovalev, D., Künzner, N., Diener, J., Koch, F., Timoshenko, V.Y., Fujii, M., (2003) Phys. Rev. B, 68, p. 115405
  • Valeur, B., (2002) Molecular Fluorescence. Principles and Applications, , Wiley-VCH: Weinheim, Germany
  • Lambert, J.B., Shuvell, H.F., Lightner, D.A., (1998) Organic Structural Spectroscopy, , Prentice Hall, Inc.: Upper Saddle River, NJ
  • Judge, K., Brown, C.W., Hamel, L., (2008) Anal. Chem., 80, pp. 4186-4192
  • Zhuravlev, L.T., (2000) Colloids Surf., A, 173, pp. 1-38
  • Caregnato, P., Mora, V.C., Le Roux, G.C., Martire, D.O., Gonzalez, M.C., (2003) J. Phys. Chem. B, 107, pp. 6131-6138
  • Brauer, H.D., Acs, A., Drews, W., Gabriel, R., Ghaeni, S., Schmidt, R., (1984) J. Photochem., 25, pp. 475-488
  • Scaiano, J.C., (1989) CRC Handbook of Organic Photochemistry, 2, pp. 229-251. , CRC Press, Inc.: Boca Raton
  • Okamoto, M., Tanaka, F., (1993) J. Phys. Chem., 97, pp. 177-180
  • Wilkinson, F., Worrall, D.R., Williams, S.L., (1995) J. Phys. Chem., 99, pp. 6689-6696
  • Schwarzenbach, R.P., Gschwend, P.M., Imboden, D.M., (2002) Environmental Organic Chemistry, , John Wiley & Sons: Hoboken, NJ
  • Miskoski, S., García, N.A., (1993) Photochem. Photobiol., p. 57
  • Kasha, M., (1952) J. Chem. Phys., 20, pp. 71-74
  • Kasha, M., (1960) Radiat. Res. Suppl., pp. 243-275
  • Derosa, M.C., Crutchley, R.J., (2002) Coord. Chem. Rev., 233-234, pp. 351-371
  • Lichtin, N.N., (1984) Light Driven Photocatalytic Process, , U.S. patent 4,427,509
  • Watanabe, T., Honda, K., (1982) J. Phys. Chem., 86, pp. 2617-2619
  • Mao, Y., Thomas, J.K., (1995) J. Phys. Chem., 99, pp. 2048-2056
  • Schweitzer, C., Schmidt, R., (2003) Chem. Rev., 103, pp. 1685-1758
  • Wilkinson, F., McGarvey, D.J., Olea, A.F., (1993) J. Am. Chem. Soc., 115, pp. 12144-12151
  • Cooper, D.R., Dimitrijevic, N.M., Nadeau, J.L., (2010) Nanoscale, 2, p. 8
  • Braslavsky, S.E., (2007) Pure Appl. Chem., 79, pp. 293-465
  • Wardman, P., (1989) Int. J. Radiat. Oncol., Biol., Phys., 16, pp. 286-287
  • Lide, D.R., (2009) Handbook of Chemistry and Physics, , CRC Press. Inc.: Boca Raton
  • Rehm, J.M., McLendon, G.L., Fauchet, P.M., (1996) J. Am. Chem. Soc., 118, pp. 4490-4491
  • Hamai, S., Hirayama, F., (1983) J. Phys. Chem., 87, pp. 83-89
  • Lakowicz, J.R., (2006) Principles of Fluorescence Spectroscopy, , 3rd ed.; Springer Science+Business Media: New York
  • Mártire, D.O., Evans, C., Bertolotti, S.G., Braslavsky, S.E., García, N.A., (1993) Chemosphere, 26, pp. 1691-1701
  • Alegre, M.L., Gerones, M., Rosso, J.A., Bertolotti, S.G., Braun, A.M., Martire, D.O., Gonzalez, M.C., (2000) J. Phys. Chem. A, 104, pp. 3117-3125

Citas:

---------- APA ----------
Llansola Portolés, M.J., David Gara, P.M., Kotler, M.L., Bertolotti, S., San Román, E., Rodríguez, H.B. & Gonzalez, M.C. (2010) . Silicon nanoparticle photophysics and singlet oxygen generation. Langmuir, 26(13), 10953-10960.
http://dx.doi.org/10.1021/la100980x
---------- CHICAGO ----------
Llansola Portolés, M.J., David Gara, P.M., Kotler, M.L., Bertolotti, S., San Román, E., Rodríguez, H.B., et al. "Silicon nanoparticle photophysics and singlet oxygen generation" . Langmuir 26, no. 13 (2010) : 10953-10960.
http://dx.doi.org/10.1021/la100980x
---------- MLA ----------
Llansola Portolés, M.J., David Gara, P.M., Kotler, M.L., Bertolotti, S., San Román, E., Rodríguez, H.B., et al. "Silicon nanoparticle photophysics and singlet oxygen generation" . Langmuir, vol. 26, no. 13, 2010, pp. 10953-10960.
http://dx.doi.org/10.1021/la100980x
---------- VANCOUVER ----------
Llansola Portolés, M.J., David Gara, P.M., Kotler, M.L., Bertolotti, S., San Román, E., Rodríguez, H.B., et al. Silicon nanoparticle photophysics and singlet oxygen generation. Langmuir. 2010;26(13):10953-10960.
http://dx.doi.org/10.1021/la100980x