Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We study the dynamics of the coverage and aggregation of gold nanoparticles over organosilanized glass substrates for different sizes of nanoparticles. We present measurements of extinction spectra and nanoparticle counting statistics and demonstrate that both methods are equivalent describing those processes. We introduce models that describe the mentioned dynamics, which are characterized by an exponential-like function with two relevant parameters: a saturation value and a characteristic time. The electrostatic repulsion plays a significant role in both processes. The aggregation is dominated by the mobility of the isolated nanoparticles, which first join in dimers and, further in time, in clusters of higher number of nanoparticles. © 2010 American Chemical Society.

Registro:

Documento: Artículo
Título:Coverage and aggregation of gold nanoparticles on silanized glasses
Autor:Scarpettini, A.F.; Bragas, A.V.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
IFIBA, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
Palabras clave:Characteristic time; Counting statistics; Different sizes; Electrostatic repulsion; Extinction spectra; Glass substrates; Gold Nanoparticles; Saturation values; Exponential functions; Glass; Oligomers; Substrates; Nanoparticles
Año:2010
Volumen:26
Número:20
Página de inicio:15948
Página de fin:15953
DOI: http://dx.doi.org/10.1021/la102937b
Título revista:Langmuir
Título revista abreviado:Langmuir
ISSN:07437463
CODEN:LANGD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v26_n20_p15948_Scarpettini

Referencias:

  • Cao, Y.W.C., Jin, R.C., Mirkin, C.A., (2002) Science, 297, pp. 1536-1540
  • Nath, N., Chilkoti, A., (2002) Anal. Chem., 74, pp. 504-509
  • Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., Van Duyne, R.P., (2008) Nature Mater., 7, pp. 442-453
  • Kneipp, J., Kneipp, H., Wittig, B., Kneipp, K., (2010) Nanomed.-Nanotechnol., 6, pp. 214-226
  • Li, K.R., Stockman, M.I., Bergman, D.J., (2003) Phys. Rev. Lett., 91, p. 227402
  • Maier, S.A., Kik, P.G., Atwater, H.A., Meltzer, S., Harel, E., Koel, B.E., Requicha, A.A.G., (2003) Nature Mater., 2, pp. 229-232
  • Zou, S.L., Schatz, G.C., (2006) Phys. Rev. B, 74, p. 125111
  • Kalkbrenner, T., Ramstein, M., Mlynek, J., Sandoghdar, V., (2001) J. Microsc., 202, pp. 72-76
  • Anger, P., Bharadwaj, P., Novotny, L., (2006) Phys. Rev. Lett., 96, p. 113002
  • Scarpettini, A.F., Pellegri, N., Bragas, A.V., (2009) Opt. Commun., 282, pp. 1032-1035
  • Chumanov, G., Sokolov, K., Gregory, B.W., Cotton, T.M., (1995) J. Phys. Chem., 99, pp. 9466-9471
  • Freeman, R.G., Grabar, K.C., Allison, K.J., Bright, R.M., Davis, J.A., Guthrie, A.P., Hommer, M.B., Natan, M.J., (1995) Science, 267, pp. 1629-1632
  • Tognalli, N., Fainstein, A., Calvo, E., Bonazzola, C., Pietrasanta, L., Campoy-Quiles, M., Etchegoin, P., (2005) J. Chem. Phys., 123, p. 044707
  • Kreibig, U., Vollmer, M., (1995) Optical Properties of Metal Clusters, pp. 124-202. , Springer-Verlag: Berlin,; pp - 202
  • Grabar, K.C., Smith, P.C., Musick, M.D., Davis, J.A., Walter, D.G., Jackson, M.A., Guthrie, A.P., Natan, M.J., (1996) J. Am. Chem. Soc., 118, pp. 1148-1153
  • Park, S.H., Im, J.H., Im, J.W., Chun, B.H., Kim, J.H., (1999) Microchem. J., 63, pp. 71-91
  • Schmitt, J., MacHtle, P., Eck, D., Mohwald, H., Helm, C.A., (1999) Langmuir, 15, pp. 3256-3266
  • Kim, T., Lee, C.H., Joo, S.W., Lee, K., (2008) J. Colloid Interface Sci., 318, pp. 238-243
  • Fujiwara, K., Kasaya, H., Ogawa, N., (2009) Anal. Sci., 25, pp. 241-248
  • Arcidiacono, S., Bieri, N.R., Poulikakos, D., Grigoropoulos, C.P., (2004) Int. J. Multiphase Flow, 30, pp. 979-994
  • Coutts, M.J., Cortie, M.B., Ford, M.J., McDonagh, A.M., (2009) J. Phys. Chem. C, 113, pp. 1325-1328
  • Seitz, O., Chehimi, M.M., Cabet-Deliry, E., Truong, S., Felidj, N., Perruchot, C., Greaves, S.J., Watts, J.F., (2003) Colloids Surf., A, 218, pp. 225-239
  • Quinten, M., Kreibig, U., (1986) Surf. Sci., 172, pp. 557-577
  • Khlebtsov, B., Melnikov, A., Zharov, V., Khlebtsov, N., (2006) Nanotechnology, 17, pp. 1437-1445
  • Romero, I., Aizpurua, J., Bryant, G.W., García De Abajo, F.J., (2006) Opt. Express, 14, pp. 9988-9999
  • García De Abajo, F.J., (2008) J. Phys. Chem. C, 112, pp. 17983-17987
  • Danckwerts, M., Novotny, L., (2007) Phys. Rev. Lett., 98, p. 026104
  • Encina, E.R., Coronado, E.A., (2010) J. Phys. Chem. C, 114, pp. 3918-3923
  • Chauhan, A.K., Aswal, D.K., Koiry, S.P., Gupta, S.K., Yakhmi, J.V., Sürgers, C., Guerin, D., Vuillaume, D., (2008) Appl. Phys. A: Mater. Sci. Process., 90, pp. 581-589
  • Waddell, T.G., Leyden, D.E., De Bello, M.T., (1981) J. Am. Chem. Soc., 103, pp. 5303-5307
  • Vakarelski, I.U., Brown, S.C., Moudgil, B.M., Higashitani, K., (2007) Adv. Powder Technol., 18, pp. 605-614

Citas:

---------- APA ----------
Scarpettini, A.F. & Bragas, A.V. (2010) . Coverage and aggregation of gold nanoparticles on silanized glasses. Langmuir, 26(20), 15948-15953.
http://dx.doi.org/10.1021/la102937b
---------- CHICAGO ----------
Scarpettini, A.F., Bragas, A.V. "Coverage and aggregation of gold nanoparticles on silanized glasses" . Langmuir 26, no. 20 (2010) : 15948-15953.
http://dx.doi.org/10.1021/la102937b
---------- MLA ----------
Scarpettini, A.F., Bragas, A.V. "Coverage and aggregation of gold nanoparticles on silanized glasses" . Langmuir, vol. 26, no. 20, 2010, pp. 15948-15953.
http://dx.doi.org/10.1021/la102937b
---------- VANCOUVER ----------
Scarpettini, A.F., Bragas, A.V. Coverage and aggregation of gold nanoparticles on silanized glasses. Langmuir. 2010;26(20):15948-15953.
http://dx.doi.org/10.1021/la102937b