Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Planewave propagation with hyperbolic/hyperboliclike characteristics in uniaxial dielectric media is investigated. The phase velocity is positive with respect to the time-averaged Poynting vector for both evanescent and nonevanescent propagation in nondissipative media, A conceptualization of a uniaxial medium, which exhibits hyperboliclike planewave characteristics as a homogenized composite medium, is presented. © 2005 Wiley Periodicals, Inc.

Registro:

Documento: Artículo
Título:Uniaxial dielectric media with hyperbolic dispersion relations
Autor:Mackay, T.G.; Lakhtakia, A.; Depine, R.A.
Filiación:School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
CATMAS-Computational and Theoretical Materials Sciences Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812, United States
Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires, Argentina
Palabras clave:Bruggeman homogenization formalism; Elliptical dispersion relations; Hyperbolic dispersion relations; Bruggeman homogenization formalism; Elliptical dispersion relations; Hyperbolic dispersion relations; Poynting vector; Uniaxial dielectric media; Composite materials; Electromagnetic wave propagation; Energy dissipation; Dielectric materials
Año:2006
Volumen:48
Número:2
Página de inicio:363
Página de fin:367
DOI: http://dx.doi.org/10.1002/mop.21350
Título revista:Microwave and Optical Technology Letters
Título revista abreviado:Microwave Opt Technol Lett
ISSN:08952477
CODEN:MOTLE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08952477_v48_n2_p363_Mackay

Referencias:

  • Pendry, J.B., Negative refraction (2004) Contemp Phys, 45, pp. 191-202
  • Ramakrishna, S.A., Physics of negative refractive index materials (2005) Rep Progr Phys, 68, pp. 449-521
  • Shelby, R.A., Smith, D.R., Schultz, S., Experimental verification of a negative index of refraction (2001) Sci, 292, pp. 77-79
  • Kärkkäinen, M.K., Numerical study of wave propagation in uniaxially anisotropic Lorentzian backward-wave slabs (2003) Phys Rev E, 68, p. 026602
  • Liu, Z., Xu, J., Lin, Z., Omnidirectional reflection from a slab of uniaxially anisotropic negative refractive index materials (2004) Opt Commun, 240, pp. 19-27
  • Yonghua, L., Pei, W., Peijun, Y., Jianping, X., Hai, M., Negative refraction at the interface of uniaxial anisotropic media (2005) Opt Commun, 246, pp. 429-435
  • Perez, L.I., Garea, M.T., Echarri, R.M., Isotropic-uniaxial crystal interfaces: Negative refraction and backward wave phenomena Opt Commun, , to appear
  • Smith, D.R., Schurig, D., Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors (2003) Phys Rev Lett, 90, p. 077405
  • Smith, D.R., Kolinko, P., Schurig, D., Negative refraction in indefinite media (2004) J Opt Soc Am B, 21, pp. 1032-1043
  • Born, M., Wolf, E., Principles of Optics, 6 th Ed., , Pergamon Press, Oxford
  • Chen, H.C., (1983) Theory of Electromagnetic Waves, , McGraw-Hill, New York
  • Depine, R.A., Lakhtakia, A., Diffraction by a grating made of a uniaxial dielectric-magnetic medium exhibiting negative refraction (2005) New J Physics, 7, p. 158
  • Depine, R.A., Lakhtakia, A., Perturbative approach for diffraction due to a periodically corrugated boundary between vacuum and a negative phase-velocity material (2004) Opt Commun, 233, pp. 277-282
  • Podolskiy, V.A., Alekseev, L., Narimanov, E.E., Strongly Anisotropic Media: The THz Perspectives of Left-handed Materials, , http://www.arxiv.org/physics/0505024
  • Sherwin, J.A., Lakhtakia, A., Michel, B., Homogenization of similarly oriented, metallic, ellipsoidal inclusions using the Bruggeman formalism (2000) Opt Commun, 178, pp. 267-273
  • Mackay, T.G., Homogenization of linear and nonlinear complex composite materials (2003) Introduction to Complex Mediums for Optics and Electromagnetics, pp. 317-345. , W.S. Weiglhofer and A. Lakhtakia (Eds.), SPIE Press, Bellingham, WA
  • Michel, B., A Fourier space approach to the pointwise singularity of an anisotropic dielectric medium (1997) Int J Appl Electromag Mech, 8, pp. 219-227
  • Mackay, T.G., Lakhtakia, A., Weiglhofer, W.S., Homogenisation of similarly oriented, metallic, ellipsoidal inclusions using the bilocally approximated strong-property-fluctuation theory (2001) Opt Commun, 197, pp. 89-95

Citas:

---------- APA ----------
Mackay, T.G., Lakhtakia, A. & Depine, R.A. (2006) . Uniaxial dielectric media with hyperbolic dispersion relations. Microwave and Optical Technology Letters, 48(2), 363-367.
http://dx.doi.org/10.1002/mop.21350
---------- CHICAGO ----------
Mackay, T.G., Lakhtakia, A., Depine, R.A. "Uniaxial dielectric media with hyperbolic dispersion relations" . Microwave and Optical Technology Letters 48, no. 2 (2006) : 363-367.
http://dx.doi.org/10.1002/mop.21350
---------- MLA ----------
Mackay, T.G., Lakhtakia, A., Depine, R.A. "Uniaxial dielectric media with hyperbolic dispersion relations" . Microwave and Optical Technology Letters, vol. 48, no. 2, 2006, pp. 363-367.
http://dx.doi.org/10.1002/mop.21350
---------- VANCOUVER ----------
Mackay, T.G., Lakhtakia, A., Depine, R.A. Uniaxial dielectric media with hyperbolic dispersion relations. Microwave Opt Technol Lett. 2006;48(2):363-367.
http://dx.doi.org/10.1002/mop.21350