Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We evaluate the simultaneous application of a synthetic-emitter array (SEA) methodology and formulation derived from the analysis of the rotation transformations of the scattering matrix (RTSM) to calculate the orientation of buried pipes from GPR data acquired along a single survey line. The main objective of this study is to analyze if the SEA-RTSM combination can improve the azimuth calculation obtained from the usual single-offset-RTSM (SO-RTSM) procedure. This possibility is based on the SEA ability of increasing the continuity and amplitude of the primary reflections with respect to the background clutter and noise, which is expected to reduce the fluctuations involved in the RTSM calculation of the azimuth, so that its accuracy and precision are improved. A SEA methodology designed to be used in conjunction with the RTSM methodology is described. A procedure that optimizes the results of the SEA methodology is explained. A statistical RTSM calculation is adopted in order to obtain the final azimuth. Different relevant parameters of the soil and the array of emitters are varied in order to evaluate the SEA-RTSM methodology and its results. Numerically simulated and experimental data are used in this evaluation. The SEA-RTSM and the SO-RTSM results are compared between them. These results are also compared with an equivalent common-midpoint-RTSM (CMP-RTSM) calculation. Improved precision and accuracy are obtained from the SEA-RTSM methodology in the great majority of the examples. The height/width of the resulting azimuth distribution increases 102% in average when using this procedure instead of the usual SO-RTSM procedure, the average standard deviation diminishes 12%, and the average differences between the calculated and true azimuths reduce 34%. Minor improvements with respect to SO are obtained with the CMP-RTSM methodology. The proposed SEA-RTSM methodology and its results are especially relevant in civil engineering applications in which it is necessary to know the azimuth with precision and it is not possible to acquire data following 2D grids due to obstacles in the soil surface. © 2016 Elsevier B.V.

Registro:

Documento: Artículo
Título:Azimuth calculation for buried pipelines using a synthetic array of emitters, a single survey line and scattering matrix formalism
Autor:Bullo, D.; Villela, A.; Bonomo, N.
Filiación:IFIBA, CONICET - Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:Azimuth calculation; Buried pipes; GPR; Synthetic-emitter array; Ground penetrating radar systems; Linear transformations; Precision engineering; Surveys; Accuracy and precision; Background clutter; Buried pipes; Civil engineering applications; Emitter arrays; Rotation transformation; Scattering matrices; Standard deviation; Matrix algebra; accuracy assessment; array; buried structure; civil engineering; data acquisition; ground penetrating radar; pipeline; precision; soil surface
Año:2016
Volumen:134
Página de inicio:253
Página de fin:266
DOI: http://dx.doi.org/10.1016/j.jappgeo.2016.09.016
Título revista:Journal of Applied Geophysics
Título revista abreviado:J. Appl. Geophys.
ISSN:09269851
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09269851_v134_n_p253_Bullo

Referencias:

  • Alford, R., Shear data in the presence of azimuthal anisotropy (1986) 56th Annual International Meeting, Society of Exploration Geophysics, Expanded Abstract, pp. 476-479
  • Benedetto, A., A three dimensional approach for tracking cracks in bridges using GPR (2013) J. Appl. Geophys., 97, pp. 37-40
  • Boerner, W., El-Arini, M., Chan, C., Mastoris, P., Polarization dependence in electromagnetic inverse problems (1981) IEEE Trans. Antennas Propag., AP-29, pp. 262-270
  • Capizzi, P., Cosentino, P.L., GPR multi-component data analysis (2008) Near Surf. Geophys., 6, pp. 87-95
  • Catapano, I., Soldovieri, F., Crocco, L., Di Donato, L., Persico, R., Utilities mapping via linear sampling method (2012) 4th International Conference on Ground Penetrating Radar, GPR 2012, pp. 315-319
  • Cedrina, L., Bonomo, N., Osella, A., An application of the synthetic emitter-array method to improve GPR signals (2010) J. Appl. Geophys., 70, pp. 237-244
  • Cedrina, L., Bonomo, N., Osella, A., GPR-signal improvement using a synthetic emitter array (2011) J. Appl. Geophys., 74, pp. 123-130
  • Chen, C., Higgings, B., O'Neill, K., Detsch, R., Ultrawide-bandwidth fully-polarimetric ground penetrating radar classification of subsurface unexploded ordnance (2001) IEEE Trans. Geosci. Remote Sens., 39, pp. 1221-1230
  • Engheta, N., Pappas, C.H., Elachi, C., Radiation patterns of interfacial dipole antennas (1982) Radio Sci., 17, pp. 1557-1566
  • Fisher, E., McMechan, G., Annan, P., Acquisition and processing of wide-aperture ground-penetrating radar data (1992) Geophysics, 57, pp. 495-504
  • Giannopoulos, A., Modelling ground penetrating radar by GprMax (2005) Constr. Build. Mater., 19, pp. 755-762
  • Hoegh, K., Khazanovich, L., Dai, S., Yu, T., Evaluating asphalt concrete air void variation via GPR antenna array data (2015) Case Stud. Nondestr. Test. Eval., 3, pp. 27-33
  • Jin, T., Lou, J., Zhou, Z., Extraction of landmine features using a forward-looking ground-penetrating radar with MIMO array (2012) IEEE Trans. Geosci. Remote Sens., 50, pp. 4135-4144
  • Jol, H., Ground Penetrating Radar Theory and Applications (2009), Elsevier Amsterdam (539 pp.); Leckebusch, J., Comparison of a stepped-frequency continuous wave and a pulsed GPR system (2011) Archaeol. Prospect., 18, pp. 15-25
  • Liu, H., Sato, M., In situ measurement of pavement thickness and dielectric permittivity by GPR using an antenna array (2014) NDT E Int., 64, pp. 65-71
  • Lutz, P., Perroud, H., Phased-array transmitters for GPR surveys (2006) J. Geophys. Eng., 3, pp. 35-42
  • Mazzucchelli, P., Molteni, D., Di Buono, N., Cottino, E., 3D GPR real-time automated detection of buried utilities (2012) Proceedings of the Symposium on the Application of Geophyics to Engineering and Environmental Problems, SAGEEP, pp. 309-315
  • Nuzzo, L., Alli, G., Guidi, R., Cortesi, N., Sarri, A., Manacorda, G., A new densely-sampled ground penetrating radar array for landmine detection (2014) Proceedings of the 15th International Conference on Ground Penetrating Radar, GPR 2014, pp. 969-974
  • Paglieroni, D., Chambers, D., Mast, J., Bond, S., Beer, N., Imaging modes for ground penetrating radar and their relation to detection performance (2015) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, pp. 1132-1144
  • Prado, J., Marques, L., Multi-sensor and multi-platform data fusion for buried objects detection and localization (2015) Proceedings of the 2015 IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2015, pp. 186-191
  • Sassen, D., Everett, M., 3D polarimetric GPR coherency attributes and fullwaveform inversion of transmission data for characterizing fractured rock (2009) Geophysics, 74, pp. J23-J34
  • Seol, S.J., Kim, J.-H., Song, Y., Chung, S.-H., Finding the strike direction of fractures using GPR (2001) Geophys. Prospect., 49, pp. 300-308
  • Sharma, S., Jena, P., Kuloor, R., Hyperbola summation based synthetic aperture radar technique for ground penetrating radar image focusing (2012) 2012 International Conference on Computer Communication and Informatics (ICCCI -2012), Jan. 10–12, 2012, Coimbatore, INDIA, pp. 1-5
  • Simi, A., Manacorda, G., Benedetto, A., Bridge deck survey with high resolution ground penetrating radar (2012) 14th International Conference on Ground Penetrating Radar, GPR 2012, pp. 489-495
  • Takayama, T., Sato, M., A novel direction-finding algorithm for directional borehole radar (2007) IEEE Trans. Geosci. Remote Sens., 45 (8), pp. 2520-2528
  • Van Gestel, J.P., Stoffa, P.L., Application of Alford rotation to ground-penetrating radar data (2001) Geophysics, 66, pp. 1781-1792
  • Verdonck, L., Vermeulen, F., Docter, R., Meyer, C., Kniess, R., 2D and 3D ground-penetrating radar surveys with a modular system: data processing strategies and results from archaeological field tests (2013) Near Surf. Geophys., 11, pp. 239-252
  • Villela, A., Romo, J., Invariant properties and rotation transformations of the GPR scattering matrix (2013) J. Appl. Geophys., 90, pp. 71-81
  • Yilmaz, Ö., Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data (2001), Society of Eploration Geophysicists Tulsa, USA (2027 pp.); Zeng, Z., Li, J., Huang, L., Feng, X., Liu, F., Improving target detection accuracy based on multipolarization MIMO GPR (2015) IEEE Trans. Geosci. Remote Sens., 53, pp. 15-24

Citas:

---------- APA ----------
Bullo, D., Villela, A. & Bonomo, N. (2016) . Azimuth calculation for buried pipelines using a synthetic array of emitters, a single survey line and scattering matrix formalism. Journal of Applied Geophysics, 134, 253-266.
http://dx.doi.org/10.1016/j.jappgeo.2016.09.016
---------- CHICAGO ----------
Bullo, D., Villela, A., Bonomo, N. "Azimuth calculation for buried pipelines using a synthetic array of emitters, a single survey line and scattering matrix formalism" . Journal of Applied Geophysics 134 (2016) : 253-266.
http://dx.doi.org/10.1016/j.jappgeo.2016.09.016
---------- MLA ----------
Bullo, D., Villela, A., Bonomo, N. "Azimuth calculation for buried pipelines using a synthetic array of emitters, a single survey line and scattering matrix formalism" . Journal of Applied Geophysics, vol. 134, 2016, pp. 253-266.
http://dx.doi.org/10.1016/j.jappgeo.2016.09.016
---------- VANCOUVER ----------
Bullo, D., Villela, A., Bonomo, N. Azimuth calculation for buried pipelines using a synthetic array of emitters, a single survey line and scattering matrix formalism. J. Appl. Geophys. 2016;134:253-266.
http://dx.doi.org/10.1016/j.jappgeo.2016.09.016