Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Despite the significant experimental effort made in the last decades, the origin of the ultra-high energy cosmic rays is still largely unknown. Key astrophysical information to identify where these energetic particles come from is provided by their chemical composition. It is well known that a very sensitive tracer of the primary particle type is the muon content of the showers generated by the interaction of the cosmic rays with air molecules. We introduce a likelihood function to reconstruct particle densities using segmented detectors with time resolution. As an example of this general method, we fit the muon distribution at ground level using an array of counters like AMIGA, one of the Pierre Auger Observatory detectors. For this particular case we compare the reconstruction performance against a previous method. With the new technique, more events can be reconstructed than before. In addition the statistical uncertainty of the measured number of muons is reduced, allowing for a better discrimination of the cosmic ray primary mass. © 2016 Elsevier B.V.

Registro:

Documento: Artículo
Título:Reconstruction of air shower muon densities using segmented counters with time resolution
Autor:Ravignani, D.; Supanitsky, A.D.; Melo, D.
Filiación:ITeDA (CNEA, CONICET, UNSAM), Buenos Aires, Argentina
Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), Buenos Aires, Argentina
Palabras clave:Cosmic ray primary mass composition; Integrated likelihood; Particle counters; Profile likelihood; Ultra-high energy cosmic rays; Charged particles; Cosmology; Radiation counters; Chemical compositions; Integrated likelihood; Likelihood functions; Pierre Auger observatory; Primary mass; Profile likelihood; Statistical uncertainty; Ultra high-energy cosmic rays; Cosmic rays
Año:2016
Volumen:82
Página de inicio:108
Página de fin:116
DOI: http://dx.doi.org/10.1016/j.astropartphys.2016.06.001
Título revista:Astroparticle Physics
Título revista abreviado:Astropart. Phys.
ISSN:09276505
CODEN:APHYE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09276505_v82_n_p108_Ravignani

Referencias:

  • Aab, A., The Pierre Auger cosmic ray observatory (2015) Nucl. Instrum. Meth. A, 798, p. 172
  • Abu-Zayyad, T., The surface detector array of the Telescope Array experiment (2013) Nucl. Instrum. Meth. A, 689, p. 87
  • Kampert, K.H., Unger, M., Measurements of the cosmic ray composition with air shower experiments (2012) Astropart. Phys., 35, p. 660
  • Medina-Tanco, G., Astrophysics motivation behind the Pierre Auger southern observatory enhancements (2007) Proceedings of the 30th ICRC, , Mérida, Mexico
  • Kampert, K.H., Ultrahigh-energy cosmic rays: results and prospects (2013) Braz. J. Phys., 43, p. 375
  • Supanitsky, A.D., Medina-Tanco, G., Etchegoyen, A., On the possibility of primary identification of individual cosmic ray showers (2009) Astropart. Phys., 31, p. 116
  • Aab, A., Muons in air showers at the Pierre Auger Observatory: measurement of atmospheric production depth (2014) Phys. Rev. D, 90, p. 012012. , Errata-ibid: [90 (2014) 039904] [92 (2015) 019903]
  • Aab, A., Muons in air showers at the Pierre Auger Observatory: mean number in highly inclined events (2015) Phys. Rev. D, 91, p. 032003. , Erratum-ibid: [91 (2015) 059901]
  • Apel, W.D., Lateral distributions of EAS muons (Eμ > 800 MeV) measured with the Kascade-Grande muon tracking detector in the primary energy range 1016 - 1017 eV (2015) Astropart. Phys., 65, p. 55
  • Apel, W.D., Test of the hadronic interaction model EPOS with air shower data (2009) J. Phys. G, 36, p. 035201
  • Wundheiler, B., The AMIGA muon counters of the Pierre Auger Observatory: performance and studies of the lateral distribution function (2015) Proceedings of the 34th ICRC, , The Hague, The Netherlands
  • Aab, A., Prototype muon detectors for the AMIGA component of the Pierre Auger Observatory (2016) JINST, 11, p. P02012
  • Newton, D., Knapp, J., Watson, A.A., The optimum distance at which to determine the size of a giant air shower (2007) Astropart. Phys., 26, p. 414
  • Apel, W.D., The Kascade-Grande experiment (2010) Nucl. Instrum. Meth. A, 620, p. 202
  • Nagano, M., Hatano, Y., Hara, T., Hayashida, N., Kawaguchi, S., Kamata, K., Kifune, T., Tanahashi, G., The lateral distribution of electrons of extensive air showers observed at Akeno (1984) J. Phys. Soc. Jpn., 53, p. 1667
  • Supanitsky, A.D., Etchegoyen, A., Medina-Tanco, G., Allekotte, I., Berisso, M.G., Medina, M.C., Underground muon counters as a tool for composition analyses (2008) Astropart. Phys., 29, p. 461
  • Ravignani, D., Supanitsky, A.D., A new method for reconstructing the muon lateral distribution with an array of segmented counters (2015) Astropart. Phys., 65, p. 1
  • Antoni, T., Time structure of the extensive air shower muon component measured by the Kascade experiment (2001) Astropart. Phys., 15, p. 149
  • Olive, K.A., Review of particle physics (2014) Chin. Phys. C, 38, p. 090001
  • Berger, J., Liseo, B., Wolpert, R., Integrated likelihood methods for eliminating nuisance parameters (1999) Stat. Sci., 14, p. 1
  • Aad, G., Combined measurement of the Higgs boson mass in pp collisions at s=7 and 8 TeV with the ATLAS and CMS experiments (2015) Phys. Rev. Lett., 114, p. 191803
  • Wundheiler, B., The AMIGA muon counters of the Pierre Auger Observatory: performance and first data (2011) Proceedings of the 32nd ICRC, , Beijing, China
  • James, F., Roos, M., Minuit: a system for function minimization and analysis of the parameter errors and correlations (1975) Comput. Phys. Commun., 10, p. 343
  • Antcheva, I., ROOT: A C++ framework for petabyte data storage, statistical analysis and visualization (2009) Comput. Phys. Commun., 180, p. 2499
  • Wilks, S.S., The large-sample distribution of the likelihood ratio for testing composite hypotheses (1938) Ann. Math. Stat., 9, p. 60
  • Lepage, G.P., A new algorithm for adaptive multidimensional integration (1978) J. Comput. Phys., 27, p. 192
  • Knapp, J., Heck, D., Extensive air shower simulations with the CORSIKA code (1998) Nachr. Forsch. zentr. Karlsruhe, 30, p. 27
  • Pierog, T., Karpenko, I., Katzy, J.M., Yatsenko, E., Werner, K., EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider (2015) Phys. Rev. C, 92, p. 034906

Citas:

---------- APA ----------
Ravignani, D., Supanitsky, A.D. & Melo, D. (2016) . Reconstruction of air shower muon densities using segmented counters with time resolution. Astroparticle Physics, 82, 108-116.
http://dx.doi.org/10.1016/j.astropartphys.2016.06.001
---------- CHICAGO ----------
Ravignani, D., Supanitsky, A.D., Melo, D. "Reconstruction of air shower muon densities using segmented counters with time resolution" . Astroparticle Physics 82 (2016) : 108-116.
http://dx.doi.org/10.1016/j.astropartphys.2016.06.001
---------- MLA ----------
Ravignani, D., Supanitsky, A.D., Melo, D. "Reconstruction of air shower muon densities using segmented counters with time resolution" . Astroparticle Physics, vol. 82, 2016, pp. 108-116.
http://dx.doi.org/10.1016/j.astropartphys.2016.06.001
---------- VANCOUVER ----------
Ravignani, D., Supanitsky, A.D., Melo, D. Reconstruction of air shower muon densities using segmented counters with time resolution. Astropart. Phys. 2016;82:108-116.
http://dx.doi.org/10.1016/j.astropartphys.2016.06.001