Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

During the last decade a special interest has been focused on studying the relationship between the composition and structure of emulsions and the extent of lipolysis, driven by the necessity of modulate lipid digestion to decrease or delay fats absorption or increase healthy fat nutrients bioavailability. Because bile salts (BS) play a crucial role in lipids metabolism, understanding how typical food emulsifiers affect the structures of BS under duodenal conditions, can aid to further understand how to control lipids digestion. In the present work the BS-binding capacity of three emulsifiers (Lecithin, Tween 80 and β-lactoglobulin) was studied under duodenal conditions. The combination of several techniques (DLS, TEM, ζ-potential and conductivity) allowed the characterization of molecular assemblies resulting from the interactions, as modulated by the relative amounts of BS and emulsifiers in solution. © 2018 Elsevier B.V.

Registro:

Documento: Artículo
Título:Studies on the interactions between bile salts and food emulsifiers under in vitro duodenal digestion conditions to evaluate their bile salt binding potential
Autor:Naso, J.N.; Bellesi, F.A.; Pizones Ruiz-Henestrosa, V.M.; Pilosof, A.M.R.
Filiación:ITAPROQ-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Fellowship Agencia Nacional de Promoción Científica y Tecnológica, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
Palabras clave:Bile salt; Binding; Emulsifiers; Interactions; Beam plasma interactions; Biochemistry; Body fluids; Lipids; Beta-lactoglobulin; Bile salts; Binding; Binding capacities; Binding potential; Emulsifiers; Lipid digestions; Molecular assembly; Salts; beta lactoglobulin; bile salt; phosphatidylcholine; polysorbate 80; Article; digestion; duodenum; electric conductivity; food drug interaction; in vitro study; particle size; priority journal; transmission electron microscopy; zeta potential
Año:2019
Volumen:174
Página de inicio:493
Página de fin:500
DOI: http://dx.doi.org/10.1016/j.colsurfb.2018.11.024
Título revista:Colloids and Surfaces B: Biointerfaces
Título revista abreviado:Colloids Surf. B Biointerfaces
ISSN:09277765
CODEN:CSBBE
CAS:beta lactoglobulin, 9045-23-2; phosphatidylcholine, 55128-59-1, 8002-43-5; polysorbate 80, 8050-83-7, 9005-65-6
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_09277765_v174_n_p493_Naso

Referencias:

  • Singh, A.Y.H., Structural and biochemical factors affecting the digestion of protein-stabilized emulsions (2013) Curr. Opin. Colloid Interface Sci., 18, pp. 360-370
  • Pilosof, A.M.R., Potential impact of interfacial composition of proteins and polysaccharides stabilized emulsions on the modulation of lipolysis. The role of bile salts (2017) Food Hydrocoll., 68, pp. 178-185
  • Golding, M., Wooster, T.J., The influence of emulsion structure and stability on lipid digestion (2010) Curr. Opin. Colloid Interface Sci., 15, pp. 90-101
  • Sarkar, A., Ye, A., Singh, H., On the role of bile salts in the digestion of emulsified lipids (2016) Food Hydrocoll., 60, pp. 77-84
  • Kahlon, T.S., Woodruff, C.L., In vitro binding of bile acids by soy protein, pinto beans, black beans and wheat gluten (2002) Food Chem., 79, pp. 425-429
  • Chiappisi, L., Gradzielski, M., Co-assembly in chitosan–surfactant mixtures: thermodynamics, structures, interfacial properties and applications (2015) Adv. Colloid Interface Sci., 220, pp. 92-107
  • Gunness, P., Flanagan, B.M., Mata, J.P., Gilbert, E.P., Gidley, M.J., Molecular interactions of a model bile salt and porcine bile with (1,3:1,4)-β-glucans and arabinoxylans probed by 13C NMR and SAXS (2016) Food Chem., 197, pp. 676-685
  • Torcello-Gómez, A., Foster, T.J., Interactions between cellulose ethers and a bile salt in the control of lipid digestion of lipid-based systems (2014) Carbohydr. Polym., 113, pp. 53-61
  • Torcello-Gómez, A., Foster, T.J., Influence of interfacial and bulk properties of cellulose ethers on lipolysis of oil-in-water emulsions (2016) Carbohydr. Polym., 144, pp. 495-503
  • Bellesi, F.A., Martinez, M.J., Pizones Ruiz-Henestrosa, V.M., Pilosof, A.M.R., Comparative behavior of protein or polysaccharide stabilized emulsion under in vitro gastrointestinal conditions (2016) Food Hydrocoll., 52, pp. 47-56
  • Singh, H., Sarkar, A., Behaviour of protein-stabilised emulsions under various physiological conditions (2011) Adv. Colloid Interface Sci., 165, pp. 47-57
  • Sarkar, A., Goh, K.K.T., Singh, R.P., Singh, H., Behaviour of an oil-in-water emulsion stabilized by β-lactoglobulin in an in vitro gastric model (2009) Food Hydrocoll., 23, pp. 1563-1569
  • McClements, D.J., Li, Y., Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components (2010) Adv. Colloid Interface Sci., 159, pp. 213-228
  • Birru, W.A., Warren, D.B., Ibrahim, A., Williams, H.D., Benameur, H., Porter, C.J.H., Chalmers, D.J., Pouton, C.W., Digestion of phospholipids after secretion of bile into the duodenum changes the phase behavior of bile components (2014) Mol. Pharm., 11, pp. 2825-2834
  • Rigler, M.W., Honkanen, R.E., Patton, J.S., Visualization by freeze fracture, in vitro and in vivo, of the products of fat digestion (1986) J. Lipid Res., 27, pp. 836-856
  • Zangenberg, N.H., Mullertz, A., Kristensen, H.G., Hovgaard, L., A dynamic in vitro lipolysis model II: evaluation of the model (2001) Eur. J. Pharm. Sci., 14, pp. 237-244
  • Bauer, E., Jakob, S., Mosenthin, R., Principles of physiology of lipid digestion (2005) Asian-Australas. J. Anim. Sci., 18 (2), pp. 282-295
  • Bellesi, F.A., Pizones Ruiz-Henestrosa, V.M., Pilosof, A.M.R., Behavior of protein interfacial films upon bile salts addition (2014) Food Hydrocoll., 36, pp. 115-122
  • Sarkar, A., Horne, D.S., Singh, H., Pancreatin-induced coalescence of oil-in-water emulsions in an in vitro duodenal model (2010) Int. Dairy J., 20, pp. 589-597
  • Ye, A., Cui, J., Zhu, X., Singh, H., Effect of calcium on the kinetics of free fatty acid release during in vitro lipid digestion in model emulsions (2013) Food Chem., 139, pp. 681-688
  • Farías, M.E., Martinez, M.J., Pilosof, A.M.R., Casein glycomacropeptide pH-dependent self-assembly and cold gelation (2010) Int. Dairy J., 20, pp. 79-88
  • Maldonado-Valderrama, J., Wilde, P., Macierzanka, A., Mackie, A., The role of bile salts in digestion (2011) Adv. Colloid Interface Sci., 165, pp. 36-46
  • Carey, M.C., Small, D.M., Micelle formation by bile salts: physical-chemical and thermodynamic considerations (1972) Arch. Intern. Med., 130, pp. 506-527
  • Moghimipour, E., Ameri, A., Handali, S., Absorption-enhancing effects of bile salts (2015) Molecules, 20, pp. 14451-14473
  • Madenci, D., Egelhaaf, S.U., Self-Assembly in aqueous bile salt solutions (2010) Curr. Opin. Colloid Interface Sci., 15, pp. 109-115
  • Malik, N.A., Solubilization and interaction studies of bile salts with surfactants and drugs: a review (2016) Appl. Biochem. Biotechnol., 179 (2), pp. 179-201
  • Calabresi, M., Andreozzi, P., Mesa, C.L., Supra-molecular association and polymorphic behaviour in systems containing bile acid salts (2007) Molecules, 12, pp. 1731-1754
  • Small, D.M., Size and structure of bile salt micelle: influence of structure, concentration, counterion concentration, pH and temperature (1968) Molecular Association in Biological and Related Systems, pp. 31-52. , E.D. Goddard American Chemical Society Washington DC
  • Pártay, P.J.L.B., Sega, M., Molecular aggregates in aqueous solutions of bile salts. Molecular dynamics simulation study (2007) J. Phys. Chem. B, 111, pp. 9886-9896
  • Zangenberg, A.M.N.H., Kristensen, H.G., Hovgaard, L., A dynamic in vitro lipolysis model I: controlling the rate of lipolysis by continuous addition of calcium (2001) Eur. J. Pharm. Sci., 14, pp. 115-122
  • Markina, A.A., Ivanov, V.A., Komarov, P.V., Khokhlov, A.R., Tung, S.H., Self-assembly of lecithin and bile salt in the presence of inorganic salt in water: mesoscale computer simulation (2017) J. Phys. Chem. B, 121, pp. 7878-7888
  • Vinarov, Z., Tcholakova, S., Damyanova, B., Atanasov, Y., Denkov, N.D., Stoyanov, S.D., Pelan, E., Lips, A., Effects of emulsifier charge and concentration on pancreatic lipolysis: 2. Interplay of emulsifiers and biles (2012) Langmiur, 28, pp. 12140-12150
  • Alvaro, D., Cantafora, A., Attili, A.F., Corradini, S.G., Luca, C.D., Minervini, G., Blase, A.D., Angelico, M., Relationships between bile salts hydrophilicity and phospholipid composition in bile of various animal species (1986) Comp. Biochem. Physiol. Part B Comp. Biochem., 83, pp. 551-554
  • Coleman, R., Iqbal, S., Godfrey, P.P., Billington, D., Membranes and bile formation. Composition of several mammalian biles and their membrane-damaging properties (1979) Biochem. J., 178, pp. 201-208
  • Verheul, M., Pedersen, J.S., Roefs, S.P.F.M., Kruif, K.G., Association behavior of native β-lactoglobulin (1999) Bipolymers, 49, pp. 11-20
  • Kuchlyan, J., Roy, A., Dutta, R., Sen, S., Sarkar, N., Effect of submicellar concentration of bile salts on structural alterations of β-casein micelles (2016) RSC Adv., 6, pp. 71989-71998
  • Orioni, B., Roversi, M., Mesa, C.L., Asaro, F., Pellizer, G., D'Errico, G., Polymorphic behavior in protein-surfactant mixtures: the water-bovine serum albumin-sodium taurodeoxycholate system (2006) J. Phys. Chem. B, 110, pp. 12129-12140
  • Ghosh, N., Mondal, R., Mukherjee, S., Hydrophobicity is the governing factor in the interaction of human serum albumin with bile salts (2015) Langmiur, 31, pp. 1095-1104
  • Sekhon, B.S., Surfactants: pharmaceutical and medicinal aspects (2013) J. Pharm. Technol. Res. Manag., 1, pp. 11-36
  • Kerwin, B.A., Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways (2008) J. Pharm. Sci., 97, pp. 2924-2935
  • Amani, A., York, P., Waardc, H., Anwar, J., Molecular dynamics simulation of a polysorbate 80 micelle in water (2011) Soft Matter, 7, pp. 2900-2908
  • Lafitte, G., Thuresson, K., Jarwoll, P., Nyden, M., Transport properties and aggregation phenomena of polyoxyethylene sorbitane monooleate (Polysorbate 80) in pig gastrointestinal mucin and mucus (2007) Langmuir, 23, pp. 10933-10939
  • Bhattacharjee, J., Verma, G., Aswal, V.K., Date, A.A., Nagarsenker, M.S., Hassan, P.A., Tween 80-sodium deoxycholate mixed micelles: structural characterization and application in doxorubicin delivery (2010) J. Phys. Chem. B, 114, pp. 16414-16421
  • Haque, M.E., Das, A.R., Moulik, S.P., Mixed micelles of sodium deoxycholate and polyoxyethylene sorbitan monooleate (Tween 80) (1999) J. Colloid Interface Sci., 217, pp. 1-7
  • Poša, M., Ćirin, D., Krstonošić, V., Physico-chemical properties of bile salt-Tween 80 mixed micelles in the view point of regular solution theory (2013) Chem. Eng. Sci., 98, pp. 195-202
  • Ćirin, D.M., Poša, M.M., Krstonošić, V.S., Interactions between sodium cholate or sodium deoxycholate and nonionic surfactant (Tween 20 or Tween 60) in aqueous solution (2012) Ind. Eng. Chem. Res., 51, pp. 3670-3676
  • Posa, M., Ćirin, D., Mixed micelles of sodium salts of bile acids and tween 40: effect of the steroid skeleton on the coefficient of interaction in mixed micelles (2012) Ind. Eng. Chem. Res., 51, pp. 14722-14728
  • Brouillette, C.G., Segrest, J.P., Ng, T.C., Jones, J.L., Minimal size phosphatidylcholine vesicles: effects of radius of curvature on head group packing and conformation (1982) Biochemistry, 21, pp. 4569-4575
  • Cheng, C.-Y., Oh, H., Wang, T.-Y., Raghavan, S.R., Tung, S.-H., Mixtures of lecithin and bile salt can form highly viscous wormlike micellar solutions in water (2014) Langmiur, 30, pp. 10221-10230
  • Li, J., Wang, X., Zhang, T., Wang, C., Huang, Z., Luo, X., Deng, Y., A review on phospholipids and their main applications in drug delivery systems (2015) Asian J. Pharm. Sci., 10, pp. 81-98
  • Šegota, S., Težak, D., Spontaneous formation of vesicles (2006) Adv. Colloid Interface Sci., 121, pp. 51-75
  • d. Madenci, A., Salonen, P., Schurtenberger, J.S., Pedersen, S.U., Egelhaaf, Simple model for the growth behaviour of mixed lecithin–bile salt micelles (2011) J. Chem. Soc. Faraday Trans., 13, pp. 3171-3178
  • Long, M.A., Kaler, E.W., Lee, S.P., Structural characterization of the micelle-vesicle transition in lecithin-bile salt solutions (1994) Biophys. J., 67, pp. 1733-1742
  • Nichols, J.W., Ozarowski, J., Sizing of lecithin-bile salt mixed micelles by size-exclusion high-performance liquid chromatography (1990) Biochemistry, 29, pp. 4600-4606
  • Muller, K., Structural aspects of bile salt-lecithin mixed micelles (1984) Hepatology, 4, pp. 134S-137S
  • Walter, A., Vinson, P.K., Kaplun, A., Talmon, Y., Intermediate structures in the cholate-phosphatidylcholine vesicle-micelle transition (1991) Biophys. J., 60, pp. 1315-1325
  • Kiselev, M.A., Janich, M., Hildebrand, A., Strunz, P., Neubert, R.H.H., Lombardo, D., Structural transition in aqueous lipid/bile salt [DPPC/NaDC] supramolecular aggregates: SANS and DLS study (2013) Chem. Phys., 424, pp. 93-99
  • Maza, A., Parra, J.L., Intermediate aggregates resulting in the interaction of sodium dodecyl sulphate with phosphatidylcholine liposomes (1996) Colloids Surf. A Physicochem. Eng. Asp., 112, pp. 63-71
  • Schurtenberger, P., Mazer, N., Kanzig, W., Micelle to vesicle transition in aqueous solutions of Blle Salt and lecithin (1985) J. Phys. Chem., 89, pp. 1042-1049
  • Almgren, M., Mixed micelles and other structures in the solubilization of bilayer lipid membranes by surfactants (2000) Biochim. Biophys. Acta, 1508, pp. 146-163
  • Hjelm, R.P., Thiyagarajan, P., Alkan-Onyuksel, H., Organization of Phosphatidylcholine and bile salt in rodlike mixed micelles (1992) J. Phys. Chem., 96, pp. 8653-8661

Citas:

---------- APA ----------
Naso, J.N., Bellesi, F.A., Pizones Ruiz-Henestrosa, V.M. & Pilosof, A.M.R. (2019) . Studies on the interactions between bile salts and food emulsifiers under in vitro duodenal digestion conditions to evaluate their bile salt binding potential. Colloids and Surfaces B: Biointerfaces, 174, 493-500.
http://dx.doi.org/10.1016/j.colsurfb.2018.11.024
---------- CHICAGO ----------
Naso, J.N., Bellesi, F.A., Pizones Ruiz-Henestrosa, V.M., Pilosof, A.M.R. "Studies on the interactions between bile salts and food emulsifiers under in vitro duodenal digestion conditions to evaluate their bile salt binding potential" . Colloids and Surfaces B: Biointerfaces 174 (2019) : 493-500.
http://dx.doi.org/10.1016/j.colsurfb.2018.11.024
---------- MLA ----------
Naso, J.N., Bellesi, F.A., Pizones Ruiz-Henestrosa, V.M., Pilosof, A.M.R. "Studies on the interactions between bile salts and food emulsifiers under in vitro duodenal digestion conditions to evaluate their bile salt binding potential" . Colloids and Surfaces B: Biointerfaces, vol. 174, 2019, pp. 493-500.
http://dx.doi.org/10.1016/j.colsurfb.2018.11.024
---------- VANCOUVER ----------
Naso, J.N., Bellesi, F.A., Pizones Ruiz-Henestrosa, V.M., Pilosof, A.M.R. Studies on the interactions between bile salts and food emulsifiers under in vitro duodenal digestion conditions to evaluate their bile salt binding potential. Colloids Surf. B Biointerfaces. 2019;174:493-500.
http://dx.doi.org/10.1016/j.colsurfb.2018.11.024