Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Grazing incidence fast atom diffraction (GIFAD) is a sensitive tool for surface analysis, which strongly relies on the quantum coherence of the incident beam. In this article we study the spot-beam effect, due to contributions coming from different positions of the focus point of the incident particles, which affects the coherence of GIFAD spectra. We show that the influence of the spot-beam effect on GIFAD patterns depends on the width of the surface area that is coherently lighted by the atomic beam. While for extended illuminations the spot-beam contribution plays a minor role, when a narrow surface area is coherently lighted, the spot-beam effect allows projectiles to explore different zones of a single crystallographic channel, bringing to light intra-channel interference structures. In this last case the spot-beam effect gives also rise to a non-coherent background, which deteriorates the visibility of the interference structures. We found that by varying the impact energy, while keeping the same collimating setup, it is possible to switch gradually from quantum to classical projectile distributions. Present results are compared with available experimental data, making evident that the inclusion of focusing effects is necessary for the proper theoretical description of the experimental spectra. © 2018 IOP Publishing Ltd.

Registro:

Documento: Artículo
Título:Spot-beam effect in grazing atom-surface collisions: From quantum to classical
Autor:Frisco, L.; Miraglia, J.E.; Gravielle, M.S.
Filiación:Departamento de Fisica, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Astronomia y Fisica Del Espacio (IAFE, UBA-CONICET), Casilla de Correo 67, Sucursal 28, Buenos Aires, C1428EGA, Argentina
Palabras clave:coherence length; fast atom diffraction; focusing effects; spotbeam effect; surface analysis; Atomic beams; Atoms; Diffraction; Lunar surface analysis; Projectiles; Surface analysis; Channel interferences; Coherence lengths; Experimental spectra; Fast atom diffractions; Focusing effect; Interference structures; Projectile distributions; spotbeam effect; Quantum theory
Año:2018
Volumen:30
Número:40
DOI: http://dx.doi.org/10.1088/1361-648X/aade6c
Título revista:Journal of Physics Condensed Matter
Título revista abreviado:J Phys Condens Matter
ISSN:09538984
CODEN:JCOME
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09538984_v30_n40_p_Frisco

Referencias:

  • Heinz, K., Starke, U., Bernhardt, J., Surface holography with LEED electrons (2000) Prog. Surf. Sci., 64, pp. 163-178
  • Niehus, H., Heiland, W., Taglauer, E., Low-energy ion scattering at surfaces (1993) Surf. Sci. Rep., 17, pp. 213-303
  • Farias, D., Rieder, K.-H., Atomic beam diffraction from solid surfaces (1998) Rep. Prog. Phys., 61 (12), pp. 1575-1664
  • Schüller, A., Wethekam, S., Winter, H., Diffraction of fast atomic projectiles during grazing scattering from a LiF(0 0 1) surface (2007) Phys. Rev. Lett., 98
  • Rousseau, P., Khemliche, H., Borisov, A.G., Roncin, P., Quantum scattering of fast atoms and molecules on surfaces (2007) Phys. Rev. Lett., 98
  • Winter, H., Schüller, A., Fast atom diffraction during grazing scattering from surfaces (2011) Prog. Surf. Sci., 86, pp. 169-221
  • Debiossac, M., Zugarramurdi, A., Khemliche, H., Roncin, P., Borisov, A.G., Momeni, A., Atkinson, P., Etgens, V.H., Combined experimental and theoretical study of fast atom diffraction on the β2(2×4) reconstructed GaAs(0 0 1) surface (2014) Phys. Rev., 90
  • Busch, M., Schüller, A., Wethekam, S., Winter, H., Fast atom diffraction at metal surface (2009) Surf. Sci., 603, pp. L23-L26
  • Winter, H., Seifert, J., Blauth, D., Busch, M., Schüller, A., Wethekam, S., Structure of ultrathin oxide layers on metal surfaces from grazing scattering of fast atoms (2009) Appl. Surf. Sci., 256, pp. 365-370
  • Schüller, A., Busch, M., Wethekam, S., Winter, H., Fast atom diffraction from superstructures on a Fe(1 1 0) surface (2009) Phys. Rev. Lett., 102
  • Seifert, J., Busch, M., Meyer, E., Winter, H., Surface structure of alanine on Cu(1 1 0) studied by fast atom diffraction (2013) Phys. Rev. Lett., 111
  • Zugarramurdi, A., Debiossac, M., Lunca-Popa, P., Mayne, A.J., Momeni, A., Borisov, A.G., Mu, Z., Khemliche, H., Determination of the geometric corrugation of graphene on SiC(0 0 0 1) by grazing incidence fast atom diffraction (2015) Appl. Phys. Lett., 106
  • Momeni, A., Casagrande, E.M.S., Dechaux, A., Khemliche, H., Ultrafast crystallization dynamics at an organic-inorganic interface revealed in real time by grazing incidence fast atom diffraction (2018) J. Phys. Chem. Lett., 9, pp. 908-913
  • Schüller, A., Wethekam, S., Blauth, D., Winter, H., Aigner, F., Simonović, N., Solleder, B., Wirtz, L., Rumpling of LiF(0 0 1) surface from fast atom diffraction (2010) Phys. Rev., 82
  • Schüller, A., Blauth, D., Seifert, J., Busch, M., Winter, H., Gärtner, K., Włodarczyk, R., Sierka, M., Fast atom diffraction during grazing scattering from a MgO(0 0 1) surface (2012) Surf. Sci., 606, pp. 161-173
  • Lalmi, B., Khemliche, H., Momeni, A., Soulisse, P., Roncin, P., High resolution imaging of superficial mosaicity in single crystals using grazing incidence fast atom diffraction (2012) J. Phys.: Condens. Matter, 24 (44)
  • Seifert, J., Winter, H., Quantitative structure determination using grazing scattering of fast atoms: Oxygen-induced missing-row reconstruction of Mo(1 1 2) (2016) Phys. Rev., 93
  • Del Cueto, M., Muzas, A.S., Somers, M.F., Kroes, G.J., Díaz, C., Martín, F., Exploring surface landscapes with molecules: Rotatonally induced diffraction of H2 on LiF(0 0 1) under fast grazing incidence conditions (2017) Phys. Chem. Chem. Phys., 19, pp. 16317-16322
  • Debiossac, M., Atkinson, P., Zugarramurdi, A., Eddrief, M., Finocchi, F., Etgens, V.H., Momeni, A., Roncin, P., Fast atom diffraction inside a molecular beam epitaxy chamber, a rich combination (2017) Appl. Surf. Sci., 391, pp. 53-58
  • Seifert, J., Lienemann, J., Schüller, A., Winter, H., Studies on coherence and decoherence in fast atom diffraction (2015) Nucl. Instrum. Methods Phys. Res., 350, pp. 99-105
  • Gravielle, M.S., Miraglia, J.E., Influence of beam collimation on fast-atom diffraction studied via a semiquantum approach (2015) Phys. Rev., 92
  • Gravielle, M.S., Miraglia, J.E., Single- and double-slit collimating effects on fast-atom diffraction spectra (2016) Nucl. Instrum. Methods Phys. Res., 382, pp. 42-48
  • Gravielle, M.S., Fast interaction of atoms with crystal surfaces: Coherent lighting (2017) J. Phys.: Conf. Ser., 875 (2)
  • Gravielle, M.S., Schüller, A., Winter, H., Miraglia, J., Fast atom diffraction for grazing scattering of Ne atoms from a LiF(0 0 1) surface (2011) Nucl. Instrum. Methods Phys. Res., 269, pp. 1208-1211
  • Gravielle, M.S., Miraglia, J.E., Semiquantum approach for fast atom diffraction: Solving the rainbow divergence (2014) Phys. Rev., 90
  • Bocan, G.A., Fuhr, J.D., Gravielle, M.S., Van derWaals effects on grazing-incidence fast-atom diffraction for H on LiF(0 0 1) (2016) Phys. Rev., 94
  • Bocan, G.A., Gravielle, M.S., GIFAD for He/KCl(0 0 1). Structure in the pattern for 〈110〉 incidence as a measure of the projectile-cation interaction (2018) Nucl. Instrum. Methods Phys. Res., 421, pp. 1-6
  • Miraglia, J.E., Gravielle, M.S., Reexamination of the interaction of atoms with a LiF(0 0 1) surface (2017) Phys. Rev., 95
  • Schüller, A., Winter, H., Supernumerary rainbows in the angular distribution of scattered projectiles for grazing collisions of fast atoms with a LiF(0 0 1) surface (2008) Phys. Rev. Lett., 100
  • Schüller, A., Winter, H., Gravielle, M.S., Pruneda, J.M., Miraglia, J.E., He-LiF surface interaction potential from fast atom diffraction (2009) Phys. Rev., 80
  • Born, M., Wolf, E., (1986) Principles of Optics, , (Oxford: Pergamon) ch 10
  • Adams, C.S., Sigel, M., Mlynek, J., Atom optics (1994) Phys. Rep., 240, pp. 143-210
  • Schüller, A., Winter, H., Difraction of fast atoms under axial surface channeling conditions (2009) Nucl. Instrum. Methods Phys. Res., 267, pp. 628-633
  • Taleb, A.A., Anemone, G., Hayes, W.W., Manson, J.R., Farías, D., Mutiphonon excitation and quantum decoherence in neon scattering from solid surfaces (2017) Phys. Rev., 95
  • Anemone, G., Taleb, A.A., Hayes, W.W., Manson, J.R., Farías, D., Quantum decoherence behavior in neon scattering from Ru(0 0 0 1) and Graphene/Ru(0 0 0 1) surfaces: Experiment and comparison with calculations (2017) J. Phys. Chem., 121, pp. 22815-22825
  • Roncin, P., Debiossac, M., Elastic and inelastic diffraction of fast atoms, Debye-Waller factor, and Mössbauer-Lamb-Dicke regime (2017) Phys. Rev., 96

Citas:

---------- APA ----------
Frisco, L., Miraglia, J.E. & Gravielle, M.S. (2018) . Spot-beam effect in grazing atom-surface collisions: From quantum to classical. Journal of Physics Condensed Matter, 30(40).
http://dx.doi.org/10.1088/1361-648X/aade6c
---------- CHICAGO ----------
Frisco, L., Miraglia, J.E., Gravielle, M.S. "Spot-beam effect in grazing atom-surface collisions: From quantum to classical" . Journal of Physics Condensed Matter 30, no. 40 (2018).
http://dx.doi.org/10.1088/1361-648X/aade6c
---------- MLA ----------
Frisco, L., Miraglia, J.E., Gravielle, M.S. "Spot-beam effect in grazing atom-surface collisions: From quantum to classical" . Journal of Physics Condensed Matter, vol. 30, no. 40, 2018.
http://dx.doi.org/10.1088/1361-648X/aade6c
---------- VANCOUVER ----------
Frisco, L., Miraglia, J.E., Gravielle, M.S. Spot-beam effect in grazing atom-surface collisions: From quantum to classical. J Phys Condens Matter. 2018;30(40).
http://dx.doi.org/10.1088/1361-648X/aade6c