Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Southern Mendoza and northern Neuquén Provinces, south of the Pampean Shallow Subduction region in western Argentina, are host to the <2 Myr Payunia Basaltic Province, which covers ∼39 500 km 2 with primarily basaltic intraplate volcanism. This backarc igneous province can be explained by extension due to trench roll-back following steepening of a flat slab that existed in the middle to late Miocene. Magnetotelluric data collected at 37 sites from 67°W to 70°W and 35°S to 38°S are used to probe the source of the Payún Matrú basalts. These data, which require significantly 3-D structure, are inverted with a 3-D non-linear conjugate gradient algorithm that minimizes structure for a given data misfit. We identify two significant electrically conductive structures. One, called the SWAP (shallow western asthenospheric plume) approaches the surface beneath the Payún Matrú Caldera and the Trómen Volcano and dips westward towards the subducted Nazca slab. The second, called the DEEP (deep eastern plume) approaches the surface ∼100 km to the southeast of Payún Matrú and dips steeply east to ∼400 km depth while remaining above the subducted Nazca slab. We use a variety of model assessment techniques including forward modelling and constrained inversion to test the veracity of these features. We interpret the SWAP as the source of the <2 Myr intraplate volcanism. Our model assessment permits but does not require the SWAP to connect to the Nazca slab. The SWAP and DEEP are electrically connected only in the shallow crust, which is likely due to the Neuquén sedimentary basin and not a magmatic process. We propose that the SWAP and DEEP may have been more robustly connected in the past, but that the DEEP was decapitated to form the SWAP when shallow northwestward mantle flow resumed during steepening of the slab. The ∼2 Myr basaltic volcanism is the result of this decapitated DEEP magma that had ponded below the crust until extension allowed eruption. The westward dip of the SWAP is interpreted to be the result of shear in the renewed mantle corner flow-this explains why the SWAP and Nazca slab can appear connected, yet there is no recent arc-signature magma in this region. © The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society.

Registro:

Documento: Artículo
Título:Three-dimensional electrical conductivity in the mantle beneath the Payún Matrú Volcanic Field in the Andean backarc of Argentina near 36.5°S: Evidence for decapitation of a mantle plume by resurgent upper mantle shear during slab steepening
Autor:Burd, A.I.; Booker, J.R.; Mackie, R.; Favetto, A.; Pomposiello, M.C.
Filiación:Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, WA 98195, United States
Land General Geophysics, CGG, Via Cardinale Mezzofanti 34, E-20133, Milan, Italy
Instituto de Geocronología y Geología Isotopíca, Pabellon INGEIS Universidad de Buenos Aires, CONICET, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
Palabras clave:Large igneous provinces; Magnetotellurics; Subduction zone processes; Basalt; Magnetotellurics; Tectonics; Volcanoes; Basaltic volcanism; Conjugate gradient algorithms; Constrained inversions; Electrical conductivity; Electrically conductive; Large igneous provinces; Magnetotelluric data; Subduction zone process; Shear flow; algorithm; caldera; electrical conductivity; large igneous province; magnetotelluric method; mantle plume; mantle structure; Miocene; sedimentary basin; slab; subduction zone; upper mantle; volcanism; Andes; Argentina; Ica; Mendoza; Nazca; Neuquen; Peru; Tromen Volcano
Año:2014
Volumen:198
Número:2
Página de inicio:812
Página de fin:827
DOI: http://dx.doi.org/10.1093/gji/ggu145
Título revista:Geophysical Journal International
Título revista abreviado:Geophys. J. Int.
ISSN:0956540X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0956540X_v198_n2_p812_Burd

Referencias:

  • Anderson, M., Alvarado, P., Zandt, G., Beck, S., Geometry and brittle deformation of the subducting Nazca Plate Central Chile and Argentina, Geophys (2007) J. Int., 171, pp. 419-434
  • Bermúdez, A., Delpino, D., Frey, F., Saal, A., Los basaltos de retroarco extrandinos (1993) Geologia, pp. 161-172. , ed. Ramos, V., Geologia y recursos naturals de Mendoza, Relatorio, XII Congreso Gelologico Argentino y II Congreso Exploration de Hydrocarburos, Assoc. Geol Argentina y Inst
  • Booker, J.R., Themagnetotelluric phase tensor: a critical review (2014) Surv. Geophys, 35 (1), pp. 7-40
  • Booker, J.R., Favetto, A., Pomposiello, M.C., Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina (2004) Nature, 429, pp. 399-403
  • Booker, J.R., Favetto, A., Pomposiello, M.C., Xuan, F., The roll of fluids in the Nazca flat slab near 31S revealed by the electrical resistivity structure (2005) Proceedings of the 6th International Symposium on Andean Geodynamics, pp. 119-122. , Barcelona, Spain, Extended Abstracts, IRD Editions
  • Burd, A.I., Booker, J.R., Pomposiello, M.C., Favetto, A., Larsen, J., Giordanengo, G., Orozco Bernal, L., Electrical conductivity beneath the Payún Matrú volcanic field in the Andean back-arc of Argentina near 36.5°S: insights into the magma source (2008) Proceedings of the 7th International Symposium on Andean Geodynamics, pp. 90-93. , Nice, France, Extended Abstracts, IRD Editions
  • Burd, A.I., Booker, J.R., Mackie, R.L., Pomposiello, M.C., Favetto, A., Electrical conductivity of the Pampean shallow subduction region of Argentina near 33 S: evidence for a slab window (2013) Geochem. Geophys. Geosyst., 14 (8), pp. 3192-3209
  • Cahill, T., Isacks, B., Seismicity and Shape of the Subducted Nazca Plate (1992) J. geophys. Res., 97 (17), pp. 503-517+529
  • Caldwell, G.C., Bibby, H.M., Brown, C., TheMagnetotelluric Phase Tensor (2004) Geophys. J. Int., 158, pp. 457-469
  • Egbert, G., Robust multiple-station magnetotelluric data processing (1997) Geophys. J. Int., 130, pp. 475-496
  • Folguera, A., Zapata, T., Ramos, V., Late Cenozoic extension and the evolution of the Neuquen Andes (2006) Evolution of the Andean Margin: A Tectonic and Magmatic View from the Andes to the Neuquen Basin, 407, pp. 267-286. , 35-39S lat, eds Kay, S. & Ramos, V., Geological Society of America
  • Folguera, A., Naranjo, J.A., Orihashi, Y., Sumino, H., Nagao, K., Polanco, E., Ramos, V.A., Retroarc volcanism in the northern San Rafael Block (34°-35° 30'S) southern Central Andes: occurrence, age, and tectonic setting (2009) J. Volc. Geotherm. Res., 186, pp. 169-185
  • Folguera, A., Tasárová, Z.A., Goetze, H.-J., Vera, E.R., Giménez, M., Ramos, V.A., Retroarc extension in the last 6 Ma in the South-Central Andes (36°S-40°S) evaluated through a 3-D gravity modelling (2012) J. S. Am. Earth Sci., 40, pp. 23-37
  • Gaillard, F., Malki, M., Iacono-Marziano, G., Pichavant, M., Scaillet, B., Carbonatite melts and electrical conductivity in the asthenosphere (2008) Science, 322, pp. 1363-1365
  • Germa, A., Quidelleur, X., Gillot, P.Y., Tchilinguirian, P., Volcanic evolution of the back-arc Pleistocene Payun Matru volcanic field (2010) Argentina, J. S. Am. Earth Sci., 29, pp. 717-730
  • Gerya, T., Future directions in subductionmodeling (2011) J. Geodyn, 52 (5), pp. 344-378
  • Gilbert, H., Beck, S., Zandt, G., Lithospheric and upper mantle structure of central Chile and Argentina (2006) Geophys. J. Int., 165, pp. 383-398
  • Hernando, I.R., Llambías, E.J., González, P.D., Sato, K., Volcanic stratigraphy and evidence of magma mixing in the Quaternary Payún Matrú volcano (2012) Andean backarc in western Argentina, Andean Geol., 39, pp. 158-179
  • Hicks, S.P., Nippress, S.E.J., Rietbrock, A., Sub-slab mantle anisotropy beneath south-central Chile (2012) Earth planet. Sci. Lett, pp. 357-358. , 203-213
  • Howell, J.A., Schwarz, E., Spalletti, L.A., Veiga, G.D., The Neuquén Basin: an overview (2005) The Neuquén Basin, Argentina: A Case Study in Sequence Stratigraphy and Basin Dynamics, 252, pp. 1-14. , Geological Society, London
  • Inbar, M., Risso, C., Holocene Yardangs in volcanic terrains in the Southern Andes (2001) Argentina, Earth Surf. Proc. Landforms, 26, pp. 657-666
  • Inbar, M., Risso, C., A morphological and morphometric analysis of a high density cinder cone volcanic field-Payun Matru, south-central Andes (2001) Argentina, Zeitschrift fuer Geomorphologie, 45 (3), pp. 321-343
  • Jordan, T.E., Allmendinger, R.W., The Sierras Pampeanas of Argentina: a modern analogue of Rocky Mountain foreland deformation (1986) Am. J. Sci., 286, pp. 737-764
  • Kay, S.M., Gordillo, C.E., Pocho volcanic rocks and the melting of depleted continental lithosphere above a shallowly dipping subduction zone in the central Andes (1994) Contribut. Mineral. Petrol, 117 (1), pp. 25-44
  • Kay, S.M., Burns, W., Copeland, P., Mancilla, O., Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquen Basin (2006) Evolution of the Andean Margin: A Tectonic and Magmatic View from the Andes to the Neuquen Basin, 407, pp. 19-60. , 35-39S lat, eds Kay, S.M. & Ramos, V.A., Geological Society of America
  • Kelbert, A., Schultz, A., Egbert, G., Global electromagnetic induction constraints on transition-zone water content variations (2009) Nature, 460, pp. 1003-1006
  • Khan, A., Shankland, T.J., A geophysical perspective on mantle water content and melting: inverting electromagnetic sounding data using laboratory-based electrical conductivity profiles (2012) Earth planet. Sci. Lett, pp. 317-318. , 27-43
  • Li, S., Unsworth, M.J., Booker, J.R., Wei, W., Tan, H., Jones, A.G., Partial melt or aqueous fluid in the mid-crust of southern Tibet? Constraints from INDEPTH magnetotelluric data (2003) Geophys. J. Int., 163, pp. 289-304
  • Linkimer Abarca, L., Lithospheric structure of the Pampean Fflat slab (latitude 30-33S) and Northern Costa Rica (latitude 9-11N) subduction zones (2011), PhD thesis, University of Arizona, Tucson, Arizona; Long, M.D., Mantle dynamics beneath the Pacific Northwest and the generation of voluminous back-arc volcanism (2012) Geochem. Geophys. Geosyst, 13 (1), pp. 1-12
  • Mackie, R.L., Watts, M., Detectability of 3-D sulphide targets with AFMAG (2012) SEG Technical Program Expanded Abstracts, pp. 1-4. , Society of Exploration Geophysicists
  • Mackie, R.L., Rodi, W., Watts, M.D., 3-D magnetotelluric inversion for resource exploration (2001) SEG 2001 Technical Program Expanded, , San Antonio, Texas, Society of Exploration Geophysicists
  • Meqbel, N.M., Egbert, G.D., Wannamaker, P.E., Kelbert, A., Schultz, A., Deep electrical resistivity structure of the northwesternU.S. derived from 3-d inversion of USArray magnetotelluric data (2014) Earth planet. Sci. Lett, , doi:10.1016/j.epsl.2013.12.026
  • Ni, H., Keppler, H., Behrens, H., Electrical conductivity of hydrous basaltic melts: implications for partial melting in the upper mantle (2011) Contribut. Mineral. Petrol., 162, pp. 637-650
  • Pesicek, J.D., Engdahl, E.R., Thurber, C.H., DeShon, H.R., Lange, D., Mantle subducting slab structure in the region of the 2010 M8.8 Maule earthquake (30-40°S) (2012) Chile, Geophys. J. Int., 191, pp. 317-324
  • Petiau, G., Second generation of lead-lead chloride electrodes for geophysical applications (2000) Pure appl. Geophys, 157 (3), pp. 357-382
  • Ramos, V.A., Los depósitos sinorogénicos terciarios de la región Andina (1999) Geología Argentina, 29, pp. 651-682. , ed. Caminos, R., Servicio Geológico Minero Argentino (SEGEMAR)
  • Ramos, V.A., The Grenville-age basement of the Andes (2010) J. S. Am. Earth Sci., 29, pp. 77-91
  • Ramos, V.A., Folguera, A., Payenia volcanic province in the Southern Andes: an appraisal of an exceptional Quaternary tectonic setting (2011) J. Volc. Geotherm. Res., 201, pp. 53-64
  • Ramos, V.A., Kay, S.M., Overview of the tectonic evolution of the southern Central Andes of Mendoza and Neuquen (35°-39°S latitude) (2006) Evolution of the Andean Margin: A Tectonic and Magmatic View from the Andes to the Neuquen Basin, 407, pp. 1-17. , (35-39 S lat), eds Kay, S. & Ramos, V., Geological Society of America
  • Richard, G.C., Iwamori, H., Stagnant slab,wet plumes and Cenozoic volcanism in East Asia (2010) Phys. Earth planet Inter., 183, pp. 280-287
  • Rodi, W.L., Mackie, R.L., The inverse problem (2012) The Magnetotelluric Method Theory and Practice, pp. 347-420. , eds Chave, A.D. & Jones, A.G., Cambridge Univ. Press
  • Schilling, F.R., Partzsch, G., Brasse, H., Schwarz, G., Partial melting below the magmatic arc in the central Andes deduced from geoelectromagnetic field experiments and laboratory data (1997) Phys. Earth planet. Inter., 103, pp. 17-31
  • Sellés, D., Rodríguez, A.C., Dungan, M., Naranjo, J., Gardeweg, M., Geochemistry of Nevado de LongavíVolcano (36.2°S): a compositionally atypical arc volcano in the Southern Volcanic Zone of the Andes (2004) Revista geologíca de Chile, 31, pp. 293-315
  • Wagner, L.S., Beck, S.L., Zandt, G., Upper mantle structure in the south central Chilean subduction zone (30° to 36°S) (2005) J. geophys. Res, 110, pp. B01308. , doi:10.1029/2004JB003238
  • Wang, D., Mookerjee, M., Xu, Y., Karato, S., The effect of water on the electrical conductivity of olivine (2006) Nature, 443, pp. 977-980
  • Xu, Y., Shankland, T., Poe, T., Laboratory-based electrical conductivity in the Earth's mantle (2000) J. geophys. Res.: Solid Earth, 105 (B12), p. 875. , 27 865-27
  • Yoshino, T., Katsura, T., Electrical conductivity of mantle minerals: role of water in conductivity anomalies (2013) Ann. Rev. Earth planet. Sci., 41, pp. 605-628
  • Yoshino, T., Shimojuku, A., Shan, S., Guo, X., Yamazaki, D., Ito, E., Higo, Y., Funakoshi, K., Effect of temperature, pressure and iron content on the electrical conductivity of olivine and its high-pressure polymorphs (2012) J. geophys. Res, 117, pp. B08205. , doi:10.1029/2011JB008774

Citas:

---------- APA ----------
Burd, A.I., Booker, J.R., Mackie, R., Favetto, A. & Pomposiello, M.C. (2014) . Three-dimensional electrical conductivity in the mantle beneath the Payún Matrú Volcanic Field in the Andean backarc of Argentina near 36.5°S: Evidence for decapitation of a mantle plume by resurgent upper mantle shear during slab steepening. Geophysical Journal International, 198(2), 812-827.
http://dx.doi.org/10.1093/gji/ggu145
---------- CHICAGO ----------
Burd, A.I., Booker, J.R., Mackie, R., Favetto, A., Pomposiello, M.C. "Three-dimensional electrical conductivity in the mantle beneath the Payún Matrú Volcanic Field in the Andean backarc of Argentina near 36.5°S: Evidence for decapitation of a mantle plume by resurgent upper mantle shear during slab steepening" . Geophysical Journal International 198, no. 2 (2014) : 812-827.
http://dx.doi.org/10.1093/gji/ggu145
---------- MLA ----------
Burd, A.I., Booker, J.R., Mackie, R., Favetto, A., Pomposiello, M.C. "Three-dimensional electrical conductivity in the mantle beneath the Payún Matrú Volcanic Field in the Andean backarc of Argentina near 36.5°S: Evidence for decapitation of a mantle plume by resurgent upper mantle shear during slab steepening" . Geophysical Journal International, vol. 198, no. 2, 2014, pp. 812-827.
http://dx.doi.org/10.1093/gji/ggu145
---------- VANCOUVER ----------
Burd, A.I., Booker, J.R., Mackie, R., Favetto, A., Pomposiello, M.C. Three-dimensional electrical conductivity in the mantle beneath the Payún Matrú Volcanic Field in the Andean backarc of Argentina near 36.5°S: Evidence for decapitation of a mantle plume by resurgent upper mantle shear during slab steepening. Geophys. J. Int. 2014;198(2):812-827.
http://dx.doi.org/10.1093/gji/ggu145