Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Zygosaccharomyces rouxii is an osmophilic yeast responsible for a large amount of economic loss in high sugar food production. Statistical modelling techniques were used in the present study to assess the individual effects of different chemical preservatives (potassium sorbate, sodium benzoate, dimethyldicarbonate, vanillin, ferulic, p-coumaric and caffeic acids) to control the growth of a cocktail of five yeast strains belonging to this species and isolated from spoilt concentrated grape juices. None of the preservatives assayed were able to completely inhibit the Z. rouxii growth. However, the mathematical models obtained in a high sugar culture media showed that especially four preservatives (potassium sorbate, sodium benzoate, dimethyldicarbonate and vanillin) were the best options to control the growth of this microorganism, obtaining a maximum reduction on yeast growth of approximately 40%. On the contrary, p-coumaric and caffeic acids were the preservatives with the lower effects, which only showed a maximum growth reduction percentage of approximately 15%. Results obtained in this paper could be very useful for industry for a better control of this spoilage yeast in concentrated grape juice. © 2014 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Evaluation of different chemical preservatives to control Zygosaccharomyces rouxii growth in high sugar culture media
Autor:Rojo, M.C.; Arroyo López, F.N.; Lerena, M.C.; Mercado, L.; Torres, A.; Combina, M.
Filiación:Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ), Ciudad Autónoma de Buenos Aires, Argentina
Food Biotechnology Department, Instituto de la Grasa (CSIC), Av. Padre García Tejero 4, Seville, Spain
Oenological Research Center, Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA Mza INTA), San Martín 3853 (5507), Luján de Cuyo, Mendoza, Argentina
Microbiology and Inmunology Department, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, KM 601, Córdoba, Argentina
Palabras clave:Chemical preservatives; Osmophilic yeast; Predictive models; Zygosaccharomyces rouxii
Año:2014
Volumen:50
Página de inicio:349
Página de fin:355
DOI: http://dx.doi.org/10.1016/j.foodcont.2014.09.014
Título revista:Food Control
Título revista abreviado:Food Control
ISSN:09567135
CODEN:FOOCE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09567135_v50_n_p349_Rojo

Referencias:

  • Arroyo-López, F.N., Bautista-Gallego, J., Durán-Quintana, M.C., Garrido-Fernández, A., Modelling the inhibition of sorbic and benzoic acids on a native yeast cocktail from table olives (2008) Food Microbiology, 25, pp. 566-574
  • Bautista Gallego, J., Romero Gil, V., Garrido Fernández, A., Arroyo López, F.N., Modeling the inhibitory effect of zinc chloride on table olive related yeasts (2012) Food Control, 23, pp. 499-505
  • Beuchat, L.R., Thermal inactivation of yeasts in fruit juices supplemented with food preservatives and sucrose (1982) Journal of Food Science, 47, pp. 1679-1682
  • Campos, F.M., Couto, J.A., Hogg, T.A., Influence of phenolic acids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii (2003) Journal of Applied Microbiology, 94, pp. 167-174
  • Cerrutti, P., Alzamora, S.M., Inhibitory effects of vanillin on some food spoilage yeasts in laboratory media and fruiy purées (1996) International Journal of Food Microbiology, 29, pp. 379-386
  • Chambel, A., Viegas, C.A., Sá-Correia, I., Effect of cinnamic acid on the growth and on plasma membrane H+ - ATPase activity of Saccharomyces cerevisiae (1999) International Journal of Food Microbiology, 50, pp. 173-179
  • Combina, M., Daguerre, C., Massera, A., Mercado, L., Sturm, M.E., Ganga, A., Yeasts identification in with grape juice concentrates from Argentina (2008) Letters in Applied Microbiology, 46 (2), pp. 192-197
  • Costa, A., Barata, A., Malfeito-Ferreira, M., Loureiro, V., Evaluation of the inhibitory effect of dimethyl dicarbonate (DMDC) against wine micoorganisms (2008) Food Microbiology, 25, pp. 422-427
  • Cuppers, H.G.A.M., Smelt, J.P.P.M., Time to turbidity measurement as a tool for modeling spoilage by Lactobacillus (1993) Journal of Industrial Microbiology, 12, pp. 168-171
  • Daudt, C.E., Ough, C.S., Action of dimethyl dicarbonate on various yeasts (1980) American Journal of Enology and Viticulture, 31 (1), pp. 21-23
  • Deak, T., Beuchat, L.R., Use of indirect conductimetry to predict the growth of spoilage yeasts, with special consideration of Zygosaccharomyces bailii (1994) International Journal of Food Microbiology, 23, pp. 405-417
  • Delfini, C., Gaia, P., Schellino, R., Strano, M., Pagliara, A., Ambró, S., Fermentability of grape must after inhibition with dimethyl dicarbonate (DMDC) (2002) Journal of Agricultural and Food Chemistry, 50 (20), pp. 5605-5611
  • Edlin, D.A.N., Narbad, A., Dickinson, R.J., Lloyd, D., The biotransformation of simple phenolic compounds by Brettanomyces anomalus (1995) FEMS Microbiology Letters, 125, pp. 311-316
  • Fitzgerald, D.J., Stratfors, M., Narbad, A., Analysis of the inhibition of food spoilage yeasts by vanillin (2003) International Journal of Food Microbiology, 86, pp. 113-122
  • Flanzy, C., Tablas de composición (2000) Enología: Fundamentos Científicos y Tecnológicos, pp. 218-226. , Madrid: AMV ediciones
  • Fleet, G.H., Yeast spoilage of foods and beverages (2011) The yeasts, a taxonomic study, 5, pp. 53-63
  • García-Ruiz, A., Cueva, C., González-Rompinelli, E.M., Yuste, M., Torres, M., Martín-Alvarez, P.J., Antimicrobial phenolic extracts able to inhibit lactic bacteria growth (2012) Food Control, 28, pp. 212-219
  • Genth, H., Dimethyldicarbonat - ein neuer verschwindestoff für alkoholfreie, fruchtsafthaltige enfrischungsgetranke (1979) Erfrisch getränk Miner wasser Ztg, 13, pp. 262-269
  • Grimbaum, A., Ashkenazi, I., Treister, G., Goldschmied-Reouven, A., Block, C.S., Exploding bottles: eye injury due to yeast fermentation of an uncarbonated soft drink (1994) British Journal of Ophthalmology, 78, p. 883
  • Harris, V., Jiranek, V., Ford, C.M., Grbin, P.R., Inhibitory effect of hidroxycinnamic acids on Dekkera spp (2010) Applied Microbiology and Biotechnology, 86, pp. 721-729
  • Hidalgo Togores, J., (2002) Tratado de enología, 1. , Editorial Grupo Mundi Prensa
  • Hocking, M.B., Vainillin: synthetic flavoring from spent sulfite liquor (1997) Journal. Chemical Education, 74, pp. 1055-1059
  • Krebs, H.A., Wiggins, D., Stubs, M., Sols, A., Bedoya, F., Studies on the mechanism of the antifungal action of benzoate (1983) Biochemical Journal, 214, pp. 657-663
  • López-Malo, A., Alzamora, S.M., Argaiz, A., Effect of natural vainillin on germination time and radial growth of moulds in fruit-based agar systems (1995) Food Microbiology, 14, pp. 117-124
  • López-Malo, A., Alzamora, S.M., Argaiz, A., Vainillin and pH synergistic effects on mould growth (1998) Journal of Food Science, 63, pp. 143-146
  • Marechal, P.A., Martinez de Marnanon, I., Poirier, I., Gervais, P., The importance of the kinetics of application of physical stresses on the viability of microorganisms: significance for minimal food processing (1999) Trends in Food Science and Technology, 10, pp. 15-20
  • Martorell, P., Stratford, M., Steels, H., Fernández-Espinar, M.T., Querol, A., Physiological characterization of spoilage strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments (2007) International Journal of Food Microbiology, 114, pp. 234-242
  • Matamoros-León, B., Argaiz, A., López-Malo, A., Individual and combined effects of vanillin and potassium sorbate on Penicillium digitatum, Penicillium glabrum, and Penicillium italicum growth (1999) Journal of Food Protection, 62, pp. 540-542
  • Mirzoeva, O.K., Grishanin, R.N., Calder, P.C., Antimicrobial action of propolis and some of its components: the effects on growth, membrane potential and mobility of bacteria (1997) Microbiological Research, 152, pp. 239-246
  • (2013) Code of oenological practices, pp. 1-318. , OIV Editions, Paris
  • Ough, C.S., Dimethyl dicarbonate and diethyl dicarbonate (1983) Antimicrobials in foods, pp. 299-325. , Marcel Dekker, New York, NY, A.L. Branen, P.M. Davidson (Eds.)
  • Ou, S., Kwok, K.C., Ferulic acid: pharmaceutical functions, preparation and applications in foods (2004) Journal of the Science of Food and Agriculture, 84, pp. 1261-1269
  • Pastorkova, E., Zakova, T., Landa, P., Novakova, J., Vadlejch, J., Kokoska, L., Growth inhibitory effect pf grape phenolics against wine spoilage yeasts and acetic acid bacteria (2013) International Journal of Food Microbiology, 161, pp. 209-213
  • Piper, P., Resistance of yeasts to weak organic acid food preservatives (2011) Advances in Applied Microbiology, 77, pp. 97-110
  • Pitt, J.I., Hocking, A.D., (1997) Fungi and food spoilage, , Blackie Academic and Proffesional, London
  • Pozo-Bayón, M.Á., Monagas, M., Bartolomé, B., Moreno-Arribas, M.V., Wine features related to safety and consumer health: an integrated perspective (2012) Critical Reviews in Food Science and Nutrition, 52, pp. 31-54
  • Praphailong, W., Fleet, G.H., The effect of pH, sodium chloride, sucrose, sorbate and benzoate on the growth of food spoilage yeasts (1997) Food Microbiology, 14, pp. 459-468
  • Ravn, H., Andary, C., Kovacs, G., Moelgaard, O., Caffeic acid esters as in vitro inhibitors of plant pathogenic bacteria and fungi (1989) Biochemical Systematics and Ecology, 17, pp. 175-184
  • Renouf, V., Strehaiano, P., Lonvaud-Funel, A., Effectiveness of dimethyl dicarbonate to prevent Brettanomyces bruxellensis growth in wine (2008) Food Control, 19, pp. 208-216
  • Rodríquez Vaquero, M.J., Alberto, M.R., Manca de Nadra, M.C., Antibacterial effect of phenolic compounds from different wines (2007) Food Control, 18, pp. 93-101
  • Rojo, M.C., Arroyo López, F.N., Lerena, M.C., Mercado, L., Torres, A., Effects of pH and sugar concentration in Zygosaccharomyces rouxii growth and time for spoilage in concentrated grape juice at isothermal and non-isothermal conditions (2014) Food Microbiology, 38, pp. 143-153. , Combina
  • Sá-Correia, I., Salgueiro, S.P., Viegas, C.A., Novais, J.M., Leakage induced by ethenol and octanoic and decanoic acids in Saccharomyces cerevisiae (1989) Yeast, 5, pp. S123-S127
  • Siricururatana, P., Iyer, M.M., Manns, D.C., Churey, J.J., Worobo, R.W., Padilla-Zakour, O., Shelf-life evaluation of natural antimicrobials for Concord and Niágara grape juices (2013) Journal of Food Protection, 1, pp. 72-78
  • Smid, E.J., Gorris, L.G.M., Natural antimicrobials for food preservation (1999) Handbook of food preservation, pp. 285-308. , CRC, New York, M.S. Rahman (Ed.)
  • Stead, D., The effect of hydroxycinnamic acids on the growth of wine-spoilage lactic acid bacteria (1993) Journal of Applied Bacteriology, 75, pp. 135-141
  • Stratford, M., Food and beverage spoilage yeast (2006) Yeast in food and beverages, 2, pp. 335-379. , Springer-Verlag, Germany, A. Querol, G. Fleet (Eds.) The yeast handbook
  • Stratford, M., Plumridge, A., Archer, D.B., Decarboxylation of sorbic acid by spoilage yeasts is associated with the PAD1 gene (2007) Applied and Environmental Microbiology, 73, pp. 6534-6542
  • Stratford, M., Steels, H., Nebe-Von-Caron, G., Novodvorska, M., Hayer, K., Archer, D.B., Extreme resistance to weak-acid preservatives in the spoilage yeast Zygosaccharomyces bailli (2013) International Journal of Food Microbiology, 166, pp. 126-134
  • Van Sumere, C.F., Cottenie, J., De Gref, J., Kint, J., Biochemical studies in relation to the posible germination regulatory role of naturally occurring coumarin and phenolics (1971) Recent Advances in Phytochemistry, 4, pp. 165-221
  • Vermeulen, A., Dang, T.D.T., Geeraerd, A.H., Bernaerts, K., Debevere, J., Van Impe, J., Modelling the unexpected effect of acetic and lactic acid in combination with pH and aw on the growth/no growth interface Zygosaccharomyces bailii (2008) International Journal of Food Microbiology, 124, pp. 79-90
  • Walker, T.S., Bais, H.P., Halligan, K.M., Stermitz, F.R., Vivanco, J.M., Metabolic profiling of root exudates of Arabidopsis thaliana (2003) Journal of Agricultural and Food Chemistry, 51, pp. 2548-2554
  • Warth, A.D., Mechanism of resistance of Saccharomyces bailli to benzoic, sorbic and other weak acids used as food preservatives (1977) Journal of Applied Bacteriology, 43, pp. 215-230
  • Warth, A.D., Effect of benzoic acid on growth yield of yeasts differing in their resistance to preservatives (1988) Applied and Environmental Microbiology, 54, pp. 2091-2095
  • Zwietering, M.H., Jongenburger, I., Rombouts, F.M., Van't Riet, K., Modeling of the bacterial growth curve (1990) Applied and Environmental Microbiology, 56, pp. 1875-1881

Citas:

---------- APA ----------
Rojo, M.C., Arroyo López, F.N., Lerena, M.C., Mercado, L., Torres, A. & Combina, M. (2014) . Evaluation of different chemical preservatives to control Zygosaccharomyces rouxii growth in high sugar culture media. Food Control, 50, 349-355.
http://dx.doi.org/10.1016/j.foodcont.2014.09.014
---------- CHICAGO ----------
Rojo, M.C., Arroyo López, F.N., Lerena, M.C., Mercado, L., Torres, A., Combina, M. "Evaluation of different chemical preservatives to control Zygosaccharomyces rouxii growth in high sugar culture media" . Food Control 50 (2014) : 349-355.
http://dx.doi.org/10.1016/j.foodcont.2014.09.014
---------- MLA ----------
Rojo, M.C., Arroyo López, F.N., Lerena, M.C., Mercado, L., Torres, A., Combina, M. "Evaluation of different chemical preservatives to control Zygosaccharomyces rouxii growth in high sugar culture media" . Food Control, vol. 50, 2014, pp. 349-355.
http://dx.doi.org/10.1016/j.foodcont.2014.09.014
---------- VANCOUVER ----------
Rojo, M.C., Arroyo López, F.N., Lerena, M.C., Mercado, L., Torres, A., Combina, M. Evaluation of different chemical preservatives to control Zygosaccharomyces rouxii growth in high sugar culture media. Food Control. 2014;50:349-355.
http://dx.doi.org/10.1016/j.foodcont.2014.09.014