Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The one-dimensional porous medium equation ht = (hm hx)x (m > 0) admits waiting-time solutions, whose front remains motionless during a finite time interval tw before starting to move. We consider a family of initial value problems, and investigate the asymptotics, close to the front and near start-up, which we expect to be self-similar. We obtain numerical solutions for viscous gravity currents (m = 3) and power-law initial conditions (h ∝ xp, h is proportional to the thickness of the fluid, x is the distance to the front). We find that: (a) if p < 2/3 the front starts moving immediately, (b) if p = 2/3 the front remains motionless during a finite time, (c) if p > 2/3 one obtains waiting-time solutions in which a moving corner layer (a small interval Δx in which hx varies strongly) appears behind the front; the front starts moving when it is overrun by the corner layer. The corner layer strengthens (Δx reduces and the variation of hx increases) as it approaches the front. Our initial conditions produce waiting-time solutions whose front starts moving with nonzero velocity. We determine tw(p) and study the motion of the corner layer and the front, as well as other properties of the solutions. We compare the results with the theoretical upper and lower bounds of tw. We investigate the asymptotics of the numerical solutions for p > 2/3, close to the corner layer and the front, and near start-up. To represent this asymptotics various kinds of similarity solutions are available, that can be classified according to the self-similarity exponent δ. We find that only two types (called L and A) are relevant. The L solutions correspond to 1 < δ < 13/10, and have an infinite series of corner layers that accumulate at the front. The part of these solutions behind the first corner layer of the series represents the asymptotics of the numerical solutions in a domain that excludes the region between the corner layer and the front, for a time interval excluding the neighbourhood of start-up. The A solutions have δ ≤ 1, and represent the evolution of the strong corner layer that is arriving at the front. The numerical evidence shows that the constant front velocity solution (type A with δ = 1) describes the asymptotics close to, and including start-up, so that the motion of the corner layer joins smoothly with that of the front.

Registro:

Documento: Artículo
Título:Evolution of self-similarity, and other properties of waiting-time solutions of the porous medium equation: The case of viscous gravity currents
Autor:Gratton, J.; Vigo, C.
Filiación:INFIP-Lab. de Fis. del Plasma, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428) Buenos Aires, Argentina
Año:1998
Volumen:9
Número:3
Página de inicio:327
Página de fin:350
DOI: http://dx.doi.org/10.1017/S095679259700329X
Título revista:European Journal of Applied Mathematics
Título revista abreviado:Eur. J. Appl. Math.
ISSN:09567925
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09567925_v9_n3_p327_Gratton

Referencias:

  • Aronson, D.G., Regularity properties of flows through porous media: A counterexample (1970) SIAM J. Appl. Math., 19, pp. 299-307
  • Aronson, D.G., Vázquez, J.L., Calculation of anomalous exponents in nonlinear diffusion (1994) Phys. Rev. Lett., 72, pp. 348-351
  • Aronson, D.G., Caffarelli, L.A., Kamin, S., How an initially stationary interface begins to move in porous medium flow 1983 (1983) SIAM J. Math. Anal., 14, pp. 639-658
  • Aronson, D.G., Caffarelli, L.A., Vázquez, J.L., Interfaces with a corner point in one-dimensional porous medium flow (1985) Comm. Pure Appl. Math., 38, pp. 375-404
  • Barenblatt, G.I., One some unsteady motions of fluids and gases in a porous medium (1952) Prikl. Mat. i Mekh., 16 (1), pp. 67-78
  • Barenblatt, G.I., (1979) Similarity, Self-Similarity and Intermediate Asymptotics, , Consultant Bureau, New York and London
  • Barenblatt, G.I., Zel'dovich, Ya.B., On the dipole-type solution in problems of unsteady gas filtration in the polytropic regime (1957) Prikl. Mat. i Mekh., 21, pp. 718-720
  • Barenblatt, G.I., Zel'dovich, Ya.B., Self-similar solutions as intermediate asymptotics (1972) Ann. Rev. Fluid Mech., 4, pp. 295-312
  • Buckmaster, J., Viscous sheets advancing over dry beds (1977) J. Fluid Mech., 81, pp. 735-756
  • Del Carmen, A., Ferreri, J.C., Numerical solutions of viscous, waiting, gravity driven flows (1995) Física de Fluidos, 95, pp. 113-127. , CIC
  • Eagleson, P.S., (1970) Dynamic Hydrology, , McGraw-Hill
  • Gilding, B.H., Peletier, L.A., On a class of similarity solutions of the porous media equations (1977) J. Math. Anal. Appl., 55, pp. 351-364
  • Gilding, B.H., Peletier, L.A., On a class of similarity solutions of the porous media equations II (1977) J. Math. Anal. Appl., 57, pp. 522-538
  • Gratton, J., Vigo, C., Asintótica autosemejante de flujos viscogravitatorios con tiempo de espera en función del perfil inicial (1994) Anales AFA, 6, pp. 315-319
  • Gratton, J., Vigo, C., Soluciones autosemejantes con tiempo de espera de ecuaciones no lineales de difusión (1994) Anales AFA, 6, pp. 326-331
  • Gratton, J., Minotti, F., Self-similar viscous gravity currents: Phase plane formalism (1990) J. Fluid Mech., 210, pp. 155-182
  • Gratton, J., Rossello, E., Diez, J., Physical modeling of free flows: Waiting-time behavior (1992) Mon. Ac. Nac. Ciencias Exactas Fis. y Nat., 8, pp. 51-63
  • Grundy, R.E., Similarity solutions of the nonlinear diffusion equation (1979) Quart. Appl. Math., 37, pp. 259-280
  • Hirt, C.W., Harlow, F., A general corrective procedure for the numerical solution of initial-value problems (1967) J. Comp. Phys., 2, pp. 114-119
  • Huppert, H.E., The propagation of two-dimensional viscous gravity currents over a rigid horizontal surface (1982) J. Fluid Mech., 121, pp. 43-58
  • Kálnay De Rivas, E., On the use of nonuniform grids in finite-difference equations (1972) J. Comp. Phys., 10, pp. 201-203
  • Kamin, S., Continuous groups of transformations of differential equations; applications to free boundary problems (1980) Free Boundary Problems, , E. Magenes (ed.), Tecnoprint, Roma
  • Kath, W.L., Cohen, D.S., Waiting-time behavior in a nonlinear diffusion equation (1982) Stud. Appl. Math., 67, pp. 79-105
  • Knerr, B.F., The porous medium equation in one dimension (1977) Trans. Am. Math. Soc., 234, pp. 381-415
  • Lacey, A.A., Initial motion of the free boundary for a non-linear diffusion equation (1983) IMA J. Appl. Math., 31, pp. 113-119
  • Lacey, A.A., Ockendon, J.R., Tayler, A.B., "Waiting-time" solutions of a nonlinear diffusion equation (1982) J. Appl. Math., 42, pp. 1252-1264
  • Larsen, E.W., Pomraning, G.C., Asymptotic analysis of nonlinear Marshak waves (1980) SIAM J. Appl. Math., 39, pp. 201-212
  • Marino, B.M., Thomas, L.P., Gratton, R., Diez, J.A., Betelú, S., Gratton, J., Waiting time solutions of a non-linear diffusion equation: Experimental study of a creeping flow near a waiting front (1995) Phys. Rev. E, , in press
  • Marshak, R.E., Effect of radiation on shock wave behavior (1958) Phys. Fluids, 1, pp. 24-29
  • Muskat, M., (1937) The Flow of Homogeneous Fluids Through Porous Media, , McGraw-Hill
  • Pattle, R.E., Diffusion from an instantaneous point source with a concentration-dependent coefficient (1959) Quart. J. Mech. Appl. Math., 12, pp. 407-409
  • Peletier, L.A., (1981) Applications of Nonlinear Analysis in the Physical Sciences, Chap. 11. The Porous Media Equation, pp. 229-240. , Pitman Adv. Pub. Prog., Boston
  • Pert, G.J., A class of similar solutions of the non-linear diffusion equation (1977) J. Phys. A: Math. Gen., 10 (4), pp. 583-593
  • Polubarinova-Kochina, P.Y., (1962) Theory of Ground Water Movement, , Princeton University Press
  • Thomas, L.P., Diez, J.A., Marino, B.M., Gratton, R., Gratton, J., Corrientes viscogravitatorias con frentes que esperan (1991) Anales AFA, 3, pp. 213-216
  • Tomoeda, K., Mimura, M., Numerical approximations to interface curves for a porous media equation (1983) Hiroshima Math. J., 13, pp. 273-294
  • Vázquez, J.L., Large time behavior of the solutions of the one-dimensional porous media equation (1983) Free Boundary Problems: Theory and Applications, 1, pp. 167-177. , Pitman, Boston
  • Vázquez, J.L., The interface of one-dimensional flows in porous media (1984) Trans. Amer. Math. Soc., 285, pp. 717-737
  • Zel'dovich, Ya.B., Raizer, Yu.P., (1966) Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, , Academic Press, New York

Citas:

---------- APA ----------
Gratton, J. & Vigo, C. (1998) . Evolution of self-similarity, and other properties of waiting-time solutions of the porous medium equation: The case of viscous gravity currents. European Journal of Applied Mathematics, 9(3), 327-350.
http://dx.doi.org/10.1017/S095679259700329X
---------- CHICAGO ----------
Gratton, J., Vigo, C. "Evolution of self-similarity, and other properties of waiting-time solutions of the porous medium equation: The case of viscous gravity currents" . European Journal of Applied Mathematics 9, no. 3 (1998) : 327-350.
http://dx.doi.org/10.1017/S095679259700329X
---------- MLA ----------
Gratton, J., Vigo, C. "Evolution of self-similarity, and other properties of waiting-time solutions of the porous medium equation: The case of viscous gravity currents" . European Journal of Applied Mathematics, vol. 9, no. 3, 1998, pp. 327-350.
http://dx.doi.org/10.1017/S095679259700329X
---------- VANCOUVER ----------
Gratton, J., Vigo, C. Evolution of self-similarity, and other properties of waiting-time solutions of the porous medium equation: The case of viscous gravity currents. Eur. J. Appl. Math. 1998;9(3):327-350.
http://dx.doi.org/10.1017/S095679259700329X