Artículo

Aranda, J.F.; Bacelo, D.E.; Leguizamón Aparicio, M.S.; Ocsachoque, M.A.; Castro, E.A.; Duchowicz, P.R. "Predicting the bioconcentration factor through a conformation-independent QSPR study" (2017) SAR and QSAR in Environmental Research. 28(9):749-763
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The ANTARES dataset is a large collection of known and verified experimental bioconcentration factor data, involving 851 highly heterogeneous compounds from which 159 are pesticides. The BCF ANTARES data were used to derive a conformation-independent QSPR model. A large set of 27,017 molecular descriptors was explored, with the main intention of capturing the most relevant structural characteristics affecting the studied property. The structural descriptors were derived with different freeware tools, such as PaDEL, Epi Suite, CORAL, Mold2, RECON, and QuBiLs-MAS, and so it was interesting to find out the way that the different descriptor tools complemented each other in order to improve the statistical quality of the established QSPR. The best multivariable linear regression models were found with the Replacement Method variable sub-set selection technique. The proposed QSPR model improves previous reported models of the bioconcentration factor in the present dataset. © 2017 Informa UK Limited, trading as Taylor & Francis Group.

Registro:

Documento: Artículo
Título:Predicting the bioconcentration factor through a conformation-independent QSPR study
Autor:Aranda, J.F.; Bacelo, D.E.; Leguizamón Aparicio, M.S.; Ocsachoque, M.A.; Castro, E.A.; Duchowicz, P.R.
Filiación:Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, UNLP, La Plata, Argentina
Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano, Buenos Aires, Argentina
Departamento de Química. Facultad de Ciencias Exactas (UNLP), Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr Jorge J. Ronco”, Buenos Aires, Argentina
Palabras clave:Bioconcentration factor (BCF); molecular descriptors; pesticides; quantitative structure-property relationships; replacement method; organic compound; bioremediation; chemical model; chemistry; conformation; quantitative structure activity relation; risk assessment; statistical model; Biodegradation, Environmental; Linear Models; Models, Chemical; Molecular Conformation; Organic Chemicals; Quantitative Structure-Activity Relationship; Risk Assessment
Año:2017
Volumen:28
Número:9
Página de inicio:749
Página de fin:763
DOI: http://dx.doi.org/10.1080/1062936X.2017.1377765
Título revista:SAR and QSAR in Environmental Research
Título revista abreviado:SAR QSAR Environ. Res.
ISSN:1062936X
CAS:Organic Chemicals
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1062936X_v28_n9_p749_Aranda

Referencias:

  • Matthews, G., (2015) Pesticides: Health, Safety and the Environment, , 2nd ed., Wiley-Blackwell, New York
  • Nowell, L.H., Capel, P.D., Dileanis, P.D., (1999) Pesticides in Stream Sediment and Aquatic Biota: Distribution, Trends, and Governing Factors, , CRC Press, Boca Ratón, FL:, and
  • Matthews, G., Bateman, R., Miller, P., (2014) Pesticide Application Methods, , 4th ed., Wiley-Blackwell, New York:, and
  • Beek, B., (2013) Bioaccumulation New Aspects and Developments, , The Handbook of Environmental Chemistry, Springer, Berlin
  • Grisoni, F., Consonni, V., Villa, S., Vighi, M., Todeschini, T., QSAR models for bioconcentration: Is the increase in the complexity justified by more accurate predictions? (2015) Chemosphere, 127, pp. 171-179
  • Hansch, C., Leo, A., (1995) Exploring QSAR. Fundamentals and Applications in Chemistry and Biology, , American Chemical Society, Washington, DC: and
  • Benfenati, E., (2013) Theory, guidance and applications on QSAR and REACH, , https://ebook.insilico.eu/insilico-ebook-orchestra-benfenati-ed1_rev-June2013.pdf, Orchestra
  • Roy, K., Kar, S., Narayan Das, R., (2015) Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment, , Academic Press, New York:, and
  • Benfenati, E., (2007) Quantitative Structure-Activity Relationships (QSAR) for Pesticide Regulatory Purposes, , Elsevier Science, Amsterdam
  • Knaak, J.P., Timchalk, C., Tornero-Velez, R., (2013) Parameters for pesticide QSAR and PBPK/PD models for human risk assessment, , Oxford University Press, Oxford:, and
  • Katritzky, A.R., Goordeva, E.V., Traditional topological indices vs. electronic, geometrical, and combined molecular descriptors in QSAR/QSPR research (1993) J. Chem. Inf. Comput. Sci., 33, pp. 835-857
  • Diudea, M.V.E., (2001) QSPR/QSAR Studies by Molecular Descriptors, , Nova Science Publishers, New York
  • Todeschini, R., Consonni, V., (2009) Molecular Descriptors for Chemoinformatics, Methods and Principles in Medicinal Chemistry, , Wiley-VCH, Weinheim: and
  • Pavan, M., Worth, A.P., Netzeva, T.I., (2006) Review of QSAR Models for Bioconcentration, , JRC report EUR EN I-21020, and
  • Lombardo, A., Roncaglioni, A., Boriani, E., Milan, C., Benfenati, E., Assessment and validation of the CAESAR predictive model for bioconcentration factor (BCF) in fish (2010) Chem. Cent. J., 4, p. S1
  • Zhao, C., Boriani, E., Chana, A., Roncaglioni, A., Benfenati, E., A new hybrid system of QSAR models for predicting bioconcentration factors (BCF) (2008) Chemosphere, 73, pp. 1701-1707
  • (2017), https://www.vega-qsar.eu/; Meylan, W., Howard, P., Boethling, R., Aronson, D., Printup, H., Gouchie, S., Improved method for estimating bioconcentration/bioaccumulation factor from octanol/water partition coefficient (1999) Environ. Toxicol. Chem., 18, pp. 664-672
  • (2017) U.S.EPA, , https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
  • (2017), https://www.epa.gov/nrmrl/std/qsar/qsar.html; Gissi, A., Gadaleta, D., Floris, M., Olla, S., Carotti, A., Novelllino, E., Benfenati, E., Nicolotti, O., An alternative QSAR-based approach for predicting the bioconcentration factor for regulatory purposes (2014) ALTEX, 31, pp. 23-26
  • Gissi, A., Nicolotti, O., Carotti, A., Gadaleta, D., Lombardo, A., Benfenati, E., Integration of QSAR models for bioconcentration suitable for REACH (2013) Sci. Total Environ., 456-457, pp. 325-332
  • Duchowicz, P.R., Comelli, N.C., Ortiz, E.V., Castro, E.A., QSAR study for carcinogenicity in a large set of organic compounds (2012) Curr. Drug Saf., 7, pp. 282-288
  • Duchowicz, P.R., Bennardi, D.O., Baselo, D.E., Bonifazi, E.L., Rios-Luci, C., Padrón, J.M., Burton, G., Misico, R.I., QSAR on antiproliferative naphthoquinones based on a conformation-independent approach (2014) Eur. J. Med. Chem., 77, pp. 176-184
  • Duchowicz, P.R., Fioressi, S.E., Bacelo, D.E., Saavedra, L.M., Toropova, A.P., Toropov, A.A., QSPR studies on refractive indices of structurally heterogeneous polymers (2015) Chemom. Intel. Lab. Syst., 140, pp. 86-91
  • Aranda, J.F., Garro Martinez, J.C., Castro, E.A., Duchowicz, P.R., Conformation-independent QSPR approach for the soil sorption coefficient of heterogeneous compounds (2016) Int. J. Mol. Sci., 17, p. 1247
  • (2017), http://www.acdlabs.com; (2017), https://openbabel.org/wiki/Category:Installation; (2017), https://www.yapcwsoft.com/; Yap, C.W., PaDEL-Descriptor: An open source software to calculate molecular descriptors and fingerprints (2011) J. Comput. Chem., 32, pp. 1466-1474
  • Toropov, A.A., Toropova, A.P., Benfenati, E., Gini, G., Puzyn, T., Leszczynska, D., Leszczynski, J., Novel application of the coral software to model cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli (2012) Chemosphere, 89, pp. 1098-1102
  • Toropova, A.P., Toropov, A.A., Martyanov, S.E., Benfenati, E., Gini, G., Leszczynska, D., Leszczynski, J., Coral: QSAR modeling of toxicity of organic chemicals towards Daphnia magna (2012) Chemom. Intel. Lab. Syst., 110, pp. 177-181
  • Fioressi, S.E., Bacelo, D.E., Cui, W.P., Saavedra, L.M., Duchowicz, P.R., QSPR study on refractive indices of solvents commonly used in polymer chemistry using flexible molecular descriptors (2015) SAR QSAR Environ. Res., 26, pp. 499-506
  • (2017) Coral 1.5, , https://www.insilico.eu/coral
  • Hong, H., Xie, Q., Ge, W., Qian, F., Fang, H., Shi, L., Su, Z., Tong, W., Mold2, molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics (2008) J. Chem. Inf. Model., 48, pp. 1337-1344
  • (2017), https://reccr.chem.rpi.edu/Software/RECON/recondoc/ReconManual.html; Lavine, B.K., Davidson, C.E., Breneman, C., Katt, W., Electronic van der Waals surface property descriptors and genetic algorithms for developing structure-activity correlations in olfactory databases (2003) J. Chem. Inf. Comput. Sci., 43, pp. 1890-1905
  • Bader, R.F.W., (1990) Atoms in Molecules-A Quantum Theory, , Oxford University Press, Oxford, UK
  • Breneman, C.M., Rhem, M., A QSPR analysis of HPLC column capacity factors for a set of high-energy materials using electronic Van der Waals surface property descriptors computed by the transferable atom equivalent method (1997) J. Comput. Chem., 18, pp. 182-197
  • Valdes-Martini, J.R., García Jacas, C.R., Marrero-Ponce, Y., Silveira Vaz ‘d Almeida, Y., Morrel, C., (2012) QuBiLS-MAS: Free Software for molecular descriptors calculator from Quadratic, Bilinear and Linear Maps based on Graph–Theoretic Electronic-Density Matrices and Atomic weighting, , Version 1.0. CAMD-BIR Unit, CENDA Number of register: 2373-2012, and
  • Duchowicz, P.R., Castro, E.A., Fernández, F.M., Alternative algorithm for the search of an optimal set of descriptors in QSAR-QSPR Studies (2006) MATCH Commun. Math. Comput. Chem., 55, pp. 179-192
  • Morales, A.H., Duchowicz, P.R., Cabrera Pérez, M.A., Castro, E.A., Cordeiro, M.N.D.S., González, M.P., Application of the replacement method as a novel variable selection strategy in QSAR. 1. Carcinogenic potential (2006) Chemom. Intel. Lab. Syst., 81, pp. 180-187
  • (2017) The MathWorks, Inc, , https://www.mathworks.com
  • Gramatica, P., Sangion, A., A historical excursus on the statistical validation parameters for QSAR models: A clarification concerning metrics and terminology (2016) J. Chem. Inf. Model., 56, pp. 1127-1131
  • Roy, K., Das, R.N., Ambure, P., Aher, R.B., Be aware of error measures. Further studies on validation of predictive QSAR models (2016) Chemom. Intel. Lab. Syst, 152, pp. 18-33
  • Rojas, C., Duchowicz, P.R., Tripaldi, P., Pis Diez, R., Quantitative structure-property relationship analysis for the retention index of fragrance-like compounds on a polar stationary phase (2015) J. Chromatogr. A, 1422, pp. 277-288
  • Duchowicz, P.R., Fioressi, S.E., Castro, E.A., Wróbel, K., Ibezim, N.E., Bacelo, D.E., Conformation-independent QSAR study on human epidermal growth factor receptor-2 (HER2) inhibitors (2017) Chem. Select., 2, pp. 3725-3731
  • Kaufman, L., Rousseeuw, P.J., (2005) Finding Groups in Data: An Introduction to Cluster Analysis, , Wiley, New York: and
  • Golbraikh, A., Tropsha, A., Beware of q2! (2002) J. Mol. Graphics Modell., 20, pp. 269-276
  • Rücker, C., Rücker, G., Meringer, M., Y-Randomization and its variants in QSPR/QSAR (2007) J. Chem. Inf. Model., 47, pp. 2345-2357
  • Gramatica, P., Principles of QSAR models validation: Internal and external (2007) QSAR Comb. Sci., 26, pp. 694-701
  • Roy, K., Kar, S., Ambure, P., On a simple approach for determining applicability domain of QSAR models (2015) Chemom. Intel. Lab. Syst., 145, pp. 22-29
  • Eriksson, L., Jaworska, J., Worth, A.P., Cronin, M.T., McDowell, R.M., Gramatica, P., Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs (2003) Environ. Health Perspect., 111, pp. 1361-1375
  • Draper, N.R., Smith, H., (1981) Applied Regression Analysis, , John Wiley & Sons, New York: and
  • Roy, K., Roy, P.P., Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FAMLR, PLS, GFA, G/PLS and ANN techniques (2009) Eur. J. Med. Chem., 44, pp. 2913-2922

Citas:

---------- APA ----------
Aranda, J.F., Bacelo, D.E., Leguizamón Aparicio, M.S., Ocsachoque, M.A., Castro, E.A. & Duchowicz, P.R. (2017) . Predicting the bioconcentration factor through a conformation-independent QSPR study. SAR and QSAR in Environmental Research, 28(9), 749-763.
http://dx.doi.org/10.1080/1062936X.2017.1377765
---------- CHICAGO ----------
Aranda, J.F., Bacelo, D.E., Leguizamón Aparicio, M.S., Ocsachoque, M.A., Castro, E.A., Duchowicz, P.R. "Predicting the bioconcentration factor through a conformation-independent QSPR study" . SAR and QSAR in Environmental Research 28, no. 9 (2017) : 749-763.
http://dx.doi.org/10.1080/1062936X.2017.1377765
---------- MLA ----------
Aranda, J.F., Bacelo, D.E., Leguizamón Aparicio, M.S., Ocsachoque, M.A., Castro, E.A., Duchowicz, P.R. "Predicting the bioconcentration factor through a conformation-independent QSPR study" . SAR and QSAR in Environmental Research, vol. 28, no. 9, 2017, pp. 749-763.
http://dx.doi.org/10.1080/1062936X.2017.1377765
---------- VANCOUVER ----------
Aranda, J.F., Bacelo, D.E., Leguizamón Aparicio, M.S., Ocsachoque, M.A., Castro, E.A., Duchowicz, P.R. Predicting the bioconcentration factor through a conformation-independent QSPR study. SAR QSAR Environ. Res. 2017;28(9):749-763.
http://dx.doi.org/10.1080/1062936X.2017.1377765