Panero, J.; Stanganelli, C.; Arbelbide, J.; Fantl, D.B.; Kohan, D.; García Rivello, H.; Rabinovich, G.A.; Slavutsky, I. "Expression profile of shelterin components in plasma cell disorders. Clinical significance of POT1 overexpression" (2014) Blood Cells, Molecules, and Diseases. 52(2-3):134-139
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


The core complex of telomere-associated proteins, named the shelterin complex, plays a critical role in telomere protection and telomere length (TL) homeostasis. In this study, we have explored changes in the expression of telomere-associated genes POT1, TIN2, RAP1 and TPP1, in patients with monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM). A total of 154 patients: 70 with MGUS and 84 with MM were studied. Real-time quantitative PCR was used to quantify gene expression. TL was evaluated by Terminal Restriction Fragments. Our data showed increased expression of POT1, TPP1, TIN2 and RAP1 in MM with respect to MGUS patients, with significant differences for POT1 gene (p = 0.002). In MM, the correlation of gene expression profiles with clinical characteristics highlighted POT1 for its significant association with advanced clinical stages, high calcium and β2-microglobulin levels (p = 0.02) and bone lesions (p = 0.009). In multivariate analysis, POT1 expression (p = 0.04) was a significant independent prognostic factor for overall survival as well as the staging system (ISS) (p < 0.02). Our findings suggest for the first time the participation of POT1 in the transformation process from MGUS to MM, and provide evidence of this gene as a useful prognostic factor in MM as well as a possible molecular target to design new therapeutic strategies. © 2013 Elsevier Inc.


Documento: Artículo
Título:Expression profile of shelterin components in plasma cell disorders. Clinical significance of POT1 overexpression
Autor:Panero, J.; Stanganelli, C.; Arbelbide, J.; Fantl, D.B.; Kohan, D.; García Rivello, H.; Rabinovich, G.A.; Slavutsky, I.
Filiación:Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
División Patología Molecular, Instituto de Investigaciones Hematológicas Mariano R. Castex, Academia Nacional de Medicina, Buenos Aires, Argentina
Departamento de Clínica Médica, Sección Hematología, Hospital Italiano de Buenos Aires, Argentina
Servicio de Anatomía Patológica, Hospital Italiano de Buenos Aires, Argentina
Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Idioma: Inglés
Palabras clave:MGUS; Multiple myeloma; POT1 expression; Telomere associated genes
Página de inicio:134
Página de fin:139
Título revista:Blood Cells, Molecules, and Diseases
Título revista abreviado:Blood Cells Mol. Dis.


  • Dimopoulos, M., Kyle, R., Fermand, J.P., Rajkumar, S.V., San Miguel, J., Chanan-Khan, A., Ludwig, H., Jagannath, S., Consensus recommendations for standard investigative workup: report of the International Myeloma Workshop Consensus Panel 3 (2011) Blood, 117, pp. 4701-4706
  • Landgren, O., Kyle, R.A., Pfeiffer, R.M., Katzmann, J.A., Caporaso, N.E., Hayes, R.B., Dispenzieri, A., Rajkumar, S.V., Monoclonal gammopathy of undetermined significance preceding multiple myeloma: a prospective study (2009) Blood, 113, pp. 5412-5417
  • Mingens Wols, H.A., Underhill, G.H., Kansas, G.S., Witte, P.L., The role of bone marrow-derived stromal cells in the maintenance of plasma cell longevity (2002) J. Immunol., 169, pp. 4213-4221
  • Noll, J.E., Williams, S.A., Purton, L.E., Zannettino, A.C.W., Tug of war in the haematopoietic stem cell niche: do myeloma plasma cells compete for the HSC nicheα (2012) Blood Cancer J., 2, pp. e91
  • Abroun, S., Otsuyama, K., Shamsasenjan, K., Islam, A., Amin, J., Iqbal, M.S., Gondo, T., Kawano, M.M., Galectin-1 supports the survival of CD45RA(-) primary myeloma cells in vitro (2008) Br. J. Haematol., 142, pp. 754-765
  • Blasco, M.A., Telomeres and human disease: ageing, cancer and beyond (2005) Nat. Rev. Genet., 6, pp. 611-622
  • Cohen, S.B., Graham, M.E., Lovrecz, G.O., Bache, N., Robinson, P.J., Reddel, R.R., Protein composition of catalytically active human telomerase from immortal cells (2007) Science, 315, pp. 850-853
  • Venteicher, A.S., Abreu, E.B., Meng, Z., McCann, K.E., Terns, R.M., Veenstra, T.D., Terns, M.P., Artandi, S.E., A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis (2009) Science, 323, pp. 644-648
  • Shiratsuchi, M., Muta, K., Abe, Y., Motomura, S., Taguchi, F., Takatsuki, H., Uike, N., Nishimura, J., Clinical significance of telomerase activity in multiple myeloma (2002) Cancer, 94, pp. 2232-2238
  • Xu, D., Zheng, C., Bergenbrant, S., Holm, G., Björkholm, M., Yi, Q., Gruber, A., Telomerase activity in plasma cell dyscrasias (2001) Br. J. Cancer, 84, pp. 621-625
  • Gahrton, G., New therapeutic targets in multiple myeloma (2004) Lancet, 364, pp. 1648-1649
  • Wu, K.D., Orme, L.M., Shaughnessy, J., Jacobson, J., Barlogie, B., Moore, M.A., Telomerase and telomere length in multiple myeloma: correlations with disease heterogeneity, cytogenetic status, and overall survival (2003) Blood, 101, pp. 4982-4989
  • Panero, J., Arbelbide, J., Fantl, D.B., Rivello, H.G., Kohan, D., Slavutsky, I., Altered mRNA expression of telomere-associated genes in monoclonal gammopathy of undetermined significance and multiple myeloma (2010) Mol. Med., 16, pp. 471-478
  • Guilleret, I., Benhattar, J., Unusual distribution of DNA methylation within the hTERT CpG island in tissues and cell lines (2004) Biochem. Biophys. Res. Commun., 325, pp. 1037-1043
  • Daniel, M., Peek, G.W., Tollefsbol, T.O., Regulation of the human catalytic subunit of telomerase (hTERT) (2012) Gene, 498, pp. 135-146
  • Palm, W., de Lange, T., How shelterin protects mammalian telomeres (2008) Annu. Rev. Genet., 42, pp. 301-334
  • Lei, M., Podell, E.R., Cech, T.R., Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection (2004) Nat. Struct. Mol. Biol., 11, pp. 1223-1229
  • Kelleher, C., Kurth, I., Lingner, J., Human protection of telomeres 1 (POT1) is a negative regulator of telomerase activity in vitro (2005) Mol. Cell. Biol., 25, pp. 808-818
  • Court, R., Chapman, L., Fairall, L., Rhodes, D., How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: a view from high-resolution crystal structures (2005) EMBO J., 6, pp. 39-45
  • Sarthy, J., Bae, N.S., Scrafford, J., Baumann, P., Human RAP1 inhibits non-homologous end joining at telomeres (2009) EMBO J., 28, pp. 3390-3399
  • Kabir, S., Sfeir, A., de Lange, T., Taking apart Rap1: an adaptor protein with telomeric and non-telomeric functions (2010) Cell Cycle, 9, pp. 4061-4067
  • Díaz de la Guardia, R., Catalina, P., Panero, J., Elosua, C., Pulgarin, A., López, M.B., Ayllón, V., Leone, P.E., Expression profile of telomere-associated genes in multiple myeloma (2012) J. Cell. Mol. Med., 16, pp. 3009-3021
  • Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group (2010) Br. J. Haemtol., 121, pp. 749-757. , International Myeloma Working Group
  • Durie, B.G., Salmon, E., A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival (1975) Cancer, 36, pp. 842-854
  • Greipp, P.R., San Miguel, J., Durie, B.G., Crowley, J.J., Barlogie, B., Bladé, J., Boccadoro, M., Westin, J., International staging system for multiple myeloma (2005) J. Clin. Oncol., 23, pp. 3412-3420
  • Klapper, W., Krams, M., Qian, W., Janssen, D., Parwaresch, R., Telomerase activity in B-cell non-Hodgkin lymphomas is regulated by hTERT transcription and correlated with telomere-binding protein expression but uncoupled from proliferation (2003) Br. J. Cancer, 89, pp. 713-719
  • Poncet, D., Belleville, A., t'kint de Roodenbeke, C., Roborel de Climens, A., Ben Simon, E., Merle-Beral, H., Callet-Bauchu, E., Gilson, E., Changes in the expression of telomere maintenance genes suggest global telomere dysfunction in B-chronic lymphocytic leukemia (2008) Blood, 111, pp. 2388-3291
  • Hu, L.H., Chen, F.H., Li, Y.R., Wang, L., Real-time determination of human telomerase reverse transcriptase mRNA in gastric cancer (2004) World J. Gastroenterol., 10, pp. 3514-3517
  • Cottliar, A., Pedrazzini, E., Corrado, C., Engelberger, M.I., Narbaitz, M., Slavutsky, I., Telomere shortening in patients with plasma cell disorders (2003) Eur. J. Haematol., 71, pp. 334-340
  • Stanganelli, C., Arbelbide, J., Fantl, D.B., Corrado, C., Slavutsky, I., DNA methylation analysis of tumor suppressor genes in monoclonal gammopathy of undetermined significance (2010) Ann. Hematol., 89, pp. 191-199
  • Juszczynski, P., Ouyang, J., Monti, S., Rodig, S.J., Takeyama, K., Abramson, J., Chen, W., Shipp, M.A., The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 13134-13139
  • Ilarregui, J.M., Croci, D.O., Bianco, G.A., Toscano, M.A., Salatino, M., Vermeulen, M.E., Geffner, J.R., Rabinovich, G.A., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10 (2009) Nat. Immunol., 10, pp. 981-991
  • Houghtaling, B.R., Cuttonaro, L., Chang, W., Smith, S., A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2 (2004) Curr. Biol., 14, pp. 1621-1631
  • O'Connor, M.S., Safari, A., Xin, H., Liu, D., Songyang, Z., A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 11874-11879
  • Artandi, S.E., DePhino, R.A., A critical role for telomeres in suppressing and facilitating carcinogenesis (2000) Curr. Opin. Genet. Dev., 10, pp. 39-49
  • Hu, H., Zhang, Y., Zou, M., Yang, S., Liang, X.Q., Expression of TRF1, TRF2, TIN2, TERT, KU70, and BRCA1 proteins is associated with telomere shortening and may contribute to multistage carcinogenesis of gastric cancer (2010) J. Cancer Res. Clin. Oncol., 136, pp. 1407-1414
  • Bellon, M., Datta, A., Brown, M., Pouliquen, J.F., Couppie, P., Kazanji, M., Nicot, C., Increased expression of telomere length regulating factors TRF1, TRF2 and TIN2 in patients with adult T-cell leukemia (2006) Int. J. Cancer, 119, pp. 2090-2097
  • Augereau, A., T'kint de Roodenbeke, C., Simonet, T., Bauwens, S., Horard, B., Callanan, M., Leroux, D., Poncet, D., Telomeric damage in early stage of chronic lymphocytic leukemia correlates with shelterin dysregulation (2001) Blood, 118, pp. 1316-1322
  • Wu, X., Amos, C.I., Zhu, Y., Zhao, H., Grossmas, B.H., Shay, J., Luo, S., Spitz, M.R., Telomere dysfunction: a potential cancer predisposition factor (2003) J. Natl. Cancer Inst., 95, pp. 1211-1218
  • Widmann, T.A., Herrmann, M., Taha, N., König, J., Pfreundschuh, M., Short telomeres in aggressive non-Hodgkin's lymphoma as a risk factor in lymphomagenesis (2007) Exp. Hematol., 35, pp. 939-946
  • Wan, S.M., Tie, J., Zhang, Y.F., Guo, J., Yang, L.Q., Wang, J., Xia, S.H., Fang, D.C., Silencing of the hPOT1 gene by RNA inference promotes apoptosis and inhibits proliferation and aggressive phenotype of gastric cancer cells, likely through up-regulating PinX1 expression (2001) J. Clin. Pathol., 64, pp. 1051-1057
  • Ramsay, A.J., Quesada, V., Foronda, M., Conde, L., Martínez-Trillos, A., Villamor, N., Rodríguez, D., López-Otín, C., POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia (2013) Nat. Genet., 45, pp. 526-530
  • Bechter, O.E., Eisterer, W., Dlaska, M., Kühr, T., Thaler, J., CpG island methylation of the hTERT promoter is associated with lower telomerase activity in B-cell lymphocytic leukemia (2002) Exp. Hematol., 30, pp. 26-33
  • Robertson, K.D., Wolffe, A.P., DNA methylation in health and disease (2000) Nat. Rev. Genet., 1, pp. 11-19
  • Dessain, S.K., Yu, H., Reddel, R.R., Beijersbergen, R.L., Weinberg, R.A., Methylation of the human telomerase gene CpG island (2000) Cancer Res., 60, pp. 537-541
  • Guilleret, I., Yan, P., Grange, F., Braunschweig, R., Bosman, F.T., Benhattar, J., Hypermethylation of the human telomerase catalytic subunit (hTERT) gene correlates with telomerase activity (2002) Int. J. Cancer, 101, pp. 335-341
  • Renaud, S., Loukinov, D., Abdullaev, Z., Guilleret, I., Bosman, F.T., Lobanenkov, V., Benhattar, J., Dual role of DNA methylation inside and outside of CTCF-binding regions in the transcriptional regulation of the telomerase hTERT gene (2007) Nucleic Acids Res., 35, pp. 1245-1256
  • Auchter, M., Medves, S., Chambeau, L., Gazzo, S., Moussay, E., Ammerlaan, W., Morjani, H., Wenner, T., Mechanisms of telomere maintenance dysfunction in B-chronic lymphocytic leukemia through CpG island methylation (2012) Blood, 120, p. 3489. , (Abstract)
  • Rabinovich, G.A., Croci, D.O., Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer (2012) Immunity, 36, pp. 322-335
  • Rubinstein, N., Alvarez, M., Zwirner, N.W., Toscano, M.A., Ilarregui, J.M., Bravo, A., Mordoh, J., Rabinovich, G.A., Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; a potential mechanism of tumor-immune privilege (2004) Cancer Cell, 5, pp. 241-251
  • Thijssen, V.L., Postel, R., Brandwijk, R.J., Dings, R.P., Nesmelova, I., Satijn, S., Verhofstad, N., Griffioen, A.W., Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 15975-15980
  • Demydenko, D., Berest, I., Expression of galectin-1 in malignant tumors (2009) Exp. Oncol., 31, pp. 74-79
  • Nakajima, A., Tauchi, T., Sashida, G., Sumi, M., Abe, K., Yamamoto, K., Ohyashiki, J.H., Ohyashiki, K., Telomerase inhibition enhances apoptosis in human acute leukemia cells: possibility of antitelomerase therapy (2003) Leukemia, 17, pp. 560-567
  • Sumi, M., Tauchi, T., Sashida, G., Nakajima, A., Gotoh, A., Shin-Ya, K., Ohyashiki, J.H., Ohyashiki, K., A G-quadruplex-interactive agent, telomestatin (SOT-095), induces telomere shortening with apoptosis and enhances chemosensitivity in acute myeloid leukemia (2004) Int. J. Oncol., 24, pp. 1481-1487
  • De Cian, A., Lacroix, L., Douarre, C., Temime-Smaali, N., Trentesaux, C., Riou, J.F., Mergny, J.L., Targeting telomeres and telomerase (2008) Biochimie, 90, pp. 131-155
  • Bilsland, A.E., Cairney, C.J., Keith, W.N., Targeting the telomere and shelterin complex for cancer therapy: current views and future perspectives (2011) J. Cell. Mol. Med., 15, pp. 179-186


---------- APA ----------
Panero, J., Stanganelli, C., Arbelbide, J., Fantl, D.B., Kohan, D., García Rivello, H., Rabinovich, G.A.,..., Slavutsky, I. (2014) . Expression profile of shelterin components in plasma cell disorders. Clinical significance of POT1 overexpression. Blood Cells, Molecules, and Diseases, 52(2-3), 134-139.
---------- CHICAGO ----------
Panero, J., Stanganelli, C., Arbelbide, J., Fantl, D.B., Kohan, D., García Rivello, H., et al. "Expression profile of shelterin components in plasma cell disorders. Clinical significance of POT1 overexpression" . Blood Cells, Molecules, and Diseases 52, no. 2-3 (2014) : 134-139.
---------- MLA ----------
Panero, J., Stanganelli, C., Arbelbide, J., Fantl, D.B., Kohan, D., García Rivello, H., et al. "Expression profile of shelterin components in plasma cell disorders. Clinical significance of POT1 overexpression" . Blood Cells, Molecules, and Diseases, vol. 52, no. 2-3, 2014, pp. 134-139.
---------- VANCOUVER ----------
Panero, J., Stanganelli, C., Arbelbide, J., Fantl, D.B., Kohan, D., García Rivello, H., et al. Expression profile of shelterin components in plasma cell disorders. Clinical significance of POT1 overexpression. Blood Cells Mol. Dis. 2014;52(2-3):134-139.