Artículo

Rigal, L.; Zadunaisky, P. "Twisted Semigroup Algebras" (2015) Algebras and Representation Theory. 18(5):1155-1186
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We study 2-cocycle twists, or equivalently Zhang twists, of semigroup algebras over a field K. If the underlying semigroup is affine, that is abelian, cancellative and finitely generated, then Spec K[S] is an affine toric variety over K, and we refer to the twists of K[S] as quantum affine toric varieties. We show that every quantum affine toric variety has a “dense quantum torus”, in the sense that it has a localization isomorphic to a quantum torus. We study quantum affine toric varieties and show that many geometric regularity properties of the original toric variety survive the deformation process. © 2015, Springer Science+Business Media Dordrecht.

Registro:

Documento: Artículo
Título:Twisted Semigroup Algebras
Autor:Rigal, L.; Zadunaisky, P.
Filiación:Université Paris 13, Sorbonne Paris Cité, LAGA, UMR CNRS 7539, 99 avenue J.-B. Clément, Villetaneuse, 93430, France
Universidad de Buenos Aires, FCEN, Departamento de Matemáticas, Ciudad Universitaria, Pabellón I, Buenos Aires, (C1428EGA), Argentina
Palabras clave:Artin-Schelter; Artin-Schelter Gorenstein; Cohen-Macaulay; Noncommutative geometry; Quantum toric varieties; Semigroup algebras; Artin-Schelter; Cohen-Macaulay; Gorenstein; Non-commutative geometry; Quantum toric varieties; Semi-group; Algebra
Año:2015
Volumen:18
Número:5
Página de inicio:1155
Página de fin:1186
DOI: http://dx.doi.org/10.1007/s10468-015-9525-z
Título revista:Algebras and Representation Theory
Título revista abreviado:Algebr Represent Theory
ISSN:1386923X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1386923X_v18_n5_p1155_Rigal

Referencias:

  • Artin, M., Zhang, J.J., Noncommutative projective schemes (1994) Adv. Math., 109 (2), pp. 228-287
  • Berger, R., Dimension de Hochschild des algèbres graduées. [Hochschild dimension for graded algebras.] (2005) C. R. Math. Acad. Sci. Paris, 341 (10), pp. 597-600
  • Brodmannm, M.P., Sharp, R.Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics, 60. Cambridge University Press, Cambridge; Brown, K.A., Zhang, J.J., Dualising complexes and twisted Hochschild (co)homology for Noetherian Hopf algebras (2008) J. Algebra, 320 (5), pp. 1814-1850
  • Bruns, W., Herzog, J., (1993) Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39, , Cambridge University Press, Cambridge
  • Caldero, P., Toric degenerations of Schubert varieties (2002) Transform. Groups, 7 (1), pp. 51-60
  • Cartan, H., Eilenberg, S., (1956) Homological Algebra, , Princeton University Press, Princeton
  • Fulton, W., (1993) Introduction to Toric Varieties. Annals of Mathematics Studies, 131, The William H. Roever Lectures in Geometry, , Princeton University Press, Princeton
  • Hartshorne, R., (1966) Residues and Duality. Lecture Notes in Mathematics, 20, , Springer, Berlin
  • Hibi, T., (1987) Distributive lattices, affine semigroup rings and algebras with straightening laws. Commutative algebra and combinatorics (Kyoto, 1985), 93–109, Adv. Stud. Pure Math., 11, , North-Holland, Amsterdam
  • http://kappa.math.unb.ca/~colin/research/nctoric.pdf, Ingalls, C. Quantum toric varieties. Available at; Ischebeck, F., Eine Dualität zwischen den Funktoren Ext und Tor (1969) J. Algebra, 11, pp. 510-531
  • Jørgensen, P., Local cohomology for non-commutative graded algebras (1997) Comm. Algebra, 25 (2), pp. 575-591
  • Jørgensen, P., Zhang, J.J., Gourmet’s Guide to Gorensteinness (2000) Adv. Math., 151 (2), pp. 313-345
  • Lakshmibai, V., Reshetikhin, N., Quantum flag and Schubert schemes. Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990), 145–181. Contemp (1992) Math., 134. , Amer. Math. Soc., Providence, RI
  • Lenagan, T.H., Rigal, L., Quantum graded algebras with a straightening law and the AS-Cohen-Macaulay property for quantum determinantal rings and quantum Grassmannians (2006) J. Algebra, 301 (2), pp. 670-702
  • Levasseur, T., Some properties of non-commutative regular graded rings (1992) Glasgow Math. J., 34 (3), pp. 277-300
  • Matsumura, H., (1986) Commutative Ring Theory. Cambridge Studies in Advanced Mathematics, 8, , Cambridge University Press, Cambridge
  • Maury, G., Raynaud, J., (1980) Ordres Maximaux au Sens de K. Asano. Lecture Notes in Mathematics, 808, , Springer, Berlin
  • McConnell, J.C., Robson, J.C., (2001) Noncommutative Noetherian Rings. Graduate Studies in Mathematics, 30, , American Mathematical Society, Providence
  • Nastasescu, C., van Oystaeyen, F., (1982) Graded Ring Theory. North-Holland Mathematical Library, 28, , North-Holland Publishing Co., Amsterdam-New York
  • Rigal, L., Zadunaisky, P., Quantum analogues of Richardson varieties in the Grassmannian and their toric degeneration (2012) J. Algebra, 372, pp. 293-317
  • Soibel’man, Y., On the quantum flag manifold (1992) Funktsional. Anal. i Prilozhen. 26(3), 90–92 (1992). translation in Funct. Anal. Appl, 26 (3), pp. 225-227
  • van den Bergh, M., Existence theorems for dualizing complexes over non-commutative graded and filtered rings (1997) J. Algebra, 195 (2), pp. 662-679
  • Weibel, C.A., (1994) An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics, 38, , Cambridge University Press, Cambridge
  • Yekutieli, A., Dualizing complexes over noncommutative graded algebras (1992) J. Algebra, 153 (1), pp. 41-84
  • Zadunaisky, P., (2014) Homological regularity properties of quantum flag varieties and related algebras, , http://cms.dm.uba.ar/academico/carreras/doctorado/TesisZadunaisky.pdf, PhD Thesis, university of Buenos-Aires and univ, Paris-Nord
  • Zaks, A., Injective dimension of semi-primary rings (1969) J. Algebra, 13, pp. 73-86
  • Zhang, J.J., Twisted graded algebras an equivalences of categories. Proc. London (1996) Math. Soc. (3), 72 (2), pp. 281-311

Citas:

---------- APA ----------
Rigal, L. & Zadunaisky, P. (2015) . Twisted Semigroup Algebras. Algebras and Representation Theory, 18(5), 1155-1186.
http://dx.doi.org/10.1007/s10468-015-9525-z
---------- CHICAGO ----------
Rigal, L., Zadunaisky, P. "Twisted Semigroup Algebras" . Algebras and Representation Theory 18, no. 5 (2015) : 1155-1186.
http://dx.doi.org/10.1007/s10468-015-9525-z
---------- MLA ----------
Rigal, L., Zadunaisky, P. "Twisted Semigroup Algebras" . Algebras and Representation Theory, vol. 18, no. 5, 2015, pp. 1155-1186.
http://dx.doi.org/10.1007/s10468-015-9525-z
---------- VANCOUVER ----------
Rigal, L., Zadunaisky, P. Twisted Semigroup Algebras. Algebr Represent Theory. 2015;18(5):1155-1186.
http://dx.doi.org/10.1007/s10468-015-9525-z