Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present the results of a computational study of the NMR properties of glycine in water solution at the level of density functional theory employing the B3LYP functional and the 6-31G(d,p) and pcSseg-2 basis sets, describing the solvent either via the PCM continuous solvation model or PCM with additional explicit water molecules hydrogen-bonded to the solute. We observe that the solvent causes considerable changes in the predicted magnetic shieldings and that the results depend significantly on the number of solvent molecules included in the quantum mechanical treatment. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.

Registro:

Documento: Artículo
Título:The role of explicit solvent molecules in the calculation of NMR chemical shifts of glycine in water
Autor:Caputo, M.C.; Provasi, P.F.; Sauer, S.P.A.
Filiación:Departamento de Física, FCEyN, UBA and IFIBA, Conicet, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Department of Physics - IMIT, Northeastern University - Conicet, Corrientes, W3404 AAS, Argentina
Department of Chemistry, University of Copenhagen, Copenhagen ∅, Denmark
Palabras clave:Chemical shift; PCM; pcSseg-2 basis sets
Año:2018
Volumen:137
Número:7
DOI: http://dx.doi.org/10.1007/s00214-018-2261-9
Título revista:Theoretical Chemistry Accounts
Título revista abreviado:Theor. Chem. Acc.
ISSN:1432881X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1432881X_v137_n7_p_Caputo

Referencias:

  • Jensen, J.H., Gordon, M.S., On the number of water molecules necessary to stabilize the glycine zwitterion (1995) J Am Chem Soc, 117, pp. 8159-8170
  • Fernandez-Ramos, A., Smedarchina, Z., Siebrand, W., Zgierski, M.Z., A direct-dynamics study of the zwitterion-to-neutral interconversion of glycine in aqueous solution (2000) J Chem Phys, 113, pp. 9714-9721
  • Karmacharya, R., Antoniou, D., Schwartz, S.D., Nonequilibrium solvation and the quantum kramers problem: proton transfer inaqueous glycine (2001) J Phys Chem A, 105, pp. 2563-2567
  • Aikens, C.M., Gordon, M.S., Incremental solvation of nonionized and zwitterionic glycine (2006) J Am Chem Soc, 128, pp. 12835-12850
  • Leung, K., Rempe, S.B., Ab initio molecular dynamics study of glycine intramolecular proton transfer in water (2005) J Chem Phys, 122 (1-13), p. 184506
  • Campo, M.G., Molecular dynamics simulation of glycine zwitterion in aqueous solution (2006) J Chem Phys, 125 (1-9), p. 114511
  • Sauer, S.P.A., Oddershede, J., Sabin, J.R., Directional dependence of the mean excitation energy and spectral moments of the dipole oscillator strength distribution of glycine and its zwitterion (2006) J Phys Chem A, 110, pp. 8811-8817
  • Balabin, R.M., The first step in glycine solvation: the glycine–water complex (2010) J Phys Chem B, 114, pp. 15075-15078
  • Aidas, K., Kongsted, J., Sabin, J.R., Oddershede, J., Mikkelsen, K.V., Sauer, S.P.A., The effect of solvation on the mean excitation energy of glycine (2010) J Phys Chem Lett, 1, pp. 242-245
  • Bruun-Ghalbia, S., Sauer, S.P.A., Oddershede, J., Sabin, J.R., Comparison of the directional characteristics of swift ion excitation for two small biomolecules: glycine and alanine (2010) Eur Phys J D, 60, pp. 71-76
  • Takenaka, N., Kitamura, Y., Koyano, Y., Asada, T., Nagaoka, M., Reaction path optimization and vibrational frequency analysis via ab initio qm/mm free energy gradient (feg) method: application to isomerization process of glycine in aqueous solution (2011) Theor Chem Acc, 130, pp. 215-226
  • Sauer, S.P.A., Oddershede, J., Sabin, J.R., Mean excitation energies for biomolecules: glycine to DNA (2011) Adv Quantum Chem, 62, pp. 215-242
  • Sabin, J.R., Oddershede, J., Sauer, S.P.A., Glycine: theory of the interaction with fast ion radiation (2013) Glycine: biosynthesis, physiological functions and commercial uses, chapter 4, pp. 79-96. , Vojak W, (ed), Nova Science Publisher, Hauppauge
  • Kim, J.Y., Ahn, D.S., Park, S.W., Lee, S., Gas phase hydration of amino acids and dipeptides: effects on the relative stability of zwitterion vs. canonical conformers (2014) RSC Adv, 4, pp. 16352-16361
  • Wu, R., McMahon, T.B., Stabilization of zwitterionic structures of amino acids (Gly, Ala, Val, Leu, Ile, Ser and Pro) by ammonium ions in the gas phase (2008) J Am Chem Soc, 130, pp. 3065-3078
  • Hwang, T., Eom, G., Choi, M., Jang, S., Kim, J., Le, S., Microsolvation of lysine by water: computational study of stabilized zwitterion (2011) J Phys Chem B, 115, pp. 10147-10153
  • Wada, G., Tamura, E., Okina, M., Nacamura, M., On the ratio of zuitterion form to uncharged form of glycine at equilibrium in various aqueous media (1982) Bull Chem Soc Jpn, 55, pp. 3064-3067
  • Slifkin, M.A., All, S.M., Thermodinamic parameters of the activation of glycine zwitterion protonation reactions (1984) J Mol Liq, 28, pp. 215-221
  • Peteanu, L.A., Levy, D.H., Spectroscopy of complexes of tryptamine and 3-indolepropionic acid with various solvents (1988) J Phys Chem, 92, pp. 6554-6561
  • Xu, S., Nilles, J.M., Bowen, K.H., Zwitterion formation in hydrated amino acid, dipole bound anions: How many water molecules are required? (2003) J Chem Phys, 119 (1-7), p. 10696
  • Diken, E.G., Hammer, N.I., Johnson, M.A., Preparation and photoelectron spectrum of the glycine molecular anion: assignment to a dipole-bound electron species with a high-dipole moment, non-zwitterionic form of the neutral core (2004) J Chem Phys, 120, pp. 9899-9902
  • Nonose, S., Iwaoka, S., Mori, K., Shibata, Y., Fuke, K., Structures and reactions of hydrated biomolecular cluster ions (2005) Eur Phys J D, 34, pp. 315-319
  • Alonso, J.L., Cocinero, E.J., Lesarri, A., Sanz, M.E., López, J.C., The glycine–water complex (2006) Angew Chem, 118, pp. 3551-3554
  • Császár, A.G., Conformers of gaseous glycine (1992) J Am Chem Soc, 114, pp. 9568-9575
  • Godfrey, P.D., Brown, R.D., Rodgers, F.M., The missing conformers of glycine and alanine: relaxation in seeded supersonic jets’ (1996) J Mol Struct, 376, pp. 65-81
  • Miertus, S., Scroco, E., Tomasi, J., Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects (1981) Chem Phys, 55, pp. 117-129
  • Miertus, S., Tomasi, J., Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes (1982) Chem Phys, 65, pp. 239-245
  • Cossi, M., Barone, V., Cammi, R., Tomasi, J., Ab initio study of solvated molecules: a new implementation of the polarizable continuum model (1996) Chem Phys Lett, 255, pp. 327-335
  • Cossi, M., Barone, V., Robb, M.A., A direct procedure for the evaluation of solvent effects in mc-scf calculations (1999) J Chem Phys, 111, pp. 5295-5302
  • Cossi, M., Barone, V., Solvent effect on vertical electronic transitions by the polarizable continuum model (2000) J Chem Phys, 112, pp. 2427-2435
  • Cossi, M., Rega, N., Scalmani, G., Barone, V., Polarizable dielectric model of solvation with inclusion of charge penetration effects (2001) J Chem Phys, 114, pp. 5691-5701
  • Cossi, M., Barone, V., Time-dependent density functional theory for molecules in liquid solutions (2001) J Chem Phys, 115, pp. 4708-4717
  • Cossi, M., Scalmani, G., Rega, N., Barone, V.J., New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution (2002) J Chem Phys, 117, pp. 43-54
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009) Gaussian 09 revision D.01, , Gaussian Inc., Wallingford, CT
  • Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange (1993) J Chem Phys, 98, pp. 5648-5652
  • Lee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density (1988) Phys Rev B, 37, pp. 785-789
  • Mennucci, B., Tomasi, J., Continuum solvation models: a new approach to the problem of solute’s charge distribution and cavity boundaries (1997) J Chem Phys, 106, pp. 5151-5158
  • Hehre, W.J., Ditchfield, R., Pople, J.A., Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules (1972) J Chem Phys, 56, pp. 2257-2261
  • Hariharan, P.C., Pople, J.A., Influence of polarization functions on molecular-orbital hydrogenation energies (1973) Theor Chem Acc, 28, pp. 213-222
  • Jensen, F., Segmented contracted basis sets optimized for nuclear magnetic shielding (2015) J Chem Theory Comput, 11, pp. 132-138
  • Ramsey, N.F., Magnetic shielding of nuclei in molecule (1950) Phys Rev, 78, pp. 699-703
  • Helgaker, T., Jaszuński, M., Ruud, K., Ab initio methods for the calculation of nmr shielding and indirect spin–spin coupling constants (1999) Chem Rev, 99, pp. 293-352
  • Vaara, J., Theory and computation of nuclear magnetic resonance parameters (2007) Phys Chem Chem Phys, 9, pp. 5399-5418
  • Sauer, S.P.A., (2011) Molecular electromagnetism: a computational chemistry approach, , Oxford University Press, Oxford
  • Helgaker, T., Coriani, S., Jørgensen, P., Kristensen, K., Olsen, J., Ruud, K., Recent advances in wave function-based methods of molecular-property calculations (2012) Chem Rev, 112, pp. 543-631
  • Wolinski, K., Hinton, J.F., Pulay, P., Efficient implementation of the gauge-independent atomic orbital method for nmr chemical shift calculations (1990) J Am Chem Soc, 112, pp. 8251-8260
  • Ligabue, A., Sauer, S.P.A., Lazzeretti, P., Correlated and gauge invariant calculations of nuclear magnetic shielding constants using the continuous transformation of the origin of the current density approach (2003) J Chem Phys, 118, pp. 6830-6845
  • Ligabue, A., Sauer, S.P.A., Lazzeretti, P., Gauge invariant calculations of nuclear magnetic shielding constants using the continuous transformation of the origin of the current density approach. II. Density functional and coupled cluster theory (2007) J Chem Phys, 126, p. 154111

Citas:

---------- APA ----------
Caputo, M.C., Provasi, P.F. & Sauer, S.P.A. (2018) . The role of explicit solvent molecules in the calculation of NMR chemical shifts of glycine in water. Theoretical Chemistry Accounts, 137(7).
http://dx.doi.org/10.1007/s00214-018-2261-9
---------- CHICAGO ----------
Caputo, M.C., Provasi, P.F., Sauer, S.P.A. "The role of explicit solvent molecules in the calculation of NMR chemical shifts of glycine in water" . Theoretical Chemistry Accounts 137, no. 7 (2018).
http://dx.doi.org/10.1007/s00214-018-2261-9
---------- MLA ----------
Caputo, M.C., Provasi, P.F., Sauer, S.P.A. "The role of explicit solvent molecules in the calculation of NMR chemical shifts of glycine in water" . Theoretical Chemistry Accounts, vol. 137, no. 7, 2018.
http://dx.doi.org/10.1007/s00214-018-2261-9
---------- VANCOUVER ----------
Caputo, M.C., Provasi, P.F., Sauer, S.P.A. The role of explicit solvent molecules in the calculation of NMR chemical shifts of glycine in water. Theor. Chem. Acc. 2018;137(7).
http://dx.doi.org/10.1007/s00214-018-2261-9