Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We show that Information Theory quantifiers are suitable tools for detecting and for quantifying noise-induced temporal correlations in stochastic resonance phenomena. We use the Bandt & Pompe (BP) method [Phys. Rev. Lett. 88, 174102 (2002)] to define a probability distribution, P, that fully characterizes temporal correlations. The BP method is based on a comparison of neighboring values, and here is applied to the temporal sequence of residence-time intervals generated by the paradigmatic model of a Brownian particle in a sinusoidally modulated bistable potential. The probability distribution P generated via the BP method has associated a normalized Shannon entropy, H[P], and a statistical complexity measure, C[P], which is defined as proposed by Rosso et al. [Phys. Rev. Lett. 99, 154102 (2007)]. The statistical complexity quantifies not only randomness but also the presence of correlational structures, the two extreme circumstances of maximum knowledge ("perfect order") and maximum ignorance ("complete randomness") being regarded an "trivial", and in consequence, having complexity C = 0. We show that both, H and C, display resonant features as a function of the noise intensity, i.e., for an optimal level of noise the entropy displays a minimum and the complexity, a maximum. This resonant behavior indicates noise-enhanced temporal correlations in the sequence of residence-time intervals. The methodology proposed here has great potential for the precise detection of subtle signatures of noise-induced temporal correlations in real-world complex signals. © 2009 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

Registro:

Documento: Artículo
Título:Detecting and quantifying temporal correlations in stochastic resonance via information theory measures
Autor:Rosso, O.A.; Masoller, C.
Filiación:Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, School of Electrical Engineering and Computer Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Ciudad Universitaria, Buenos Aires, Argentina
Departament de Fisica i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom 11, Terrassa 08222, Barcelona, Spain
Palabras clave:Bistable potential; Brownian particles; Complex signal; Noise intensities; Optimal level; Quantifying noise; Real-world; Resonant behavior; Shannon entropy; Statistical complexity; Stochastic resonances; Temporal correlations; Temporal sequences; Time interval; Circuit resonance; Information theory; Magnetic resonance; Probability density function; Random processes; Probability distributions
Año:2009
Volumen:69
Número:1
Página de inicio:37
Página de fin:43
DOI: http://dx.doi.org/10.1140/epjb/e2009-00146-y
Título revista:European Physical Journal B
Título revista abreviado:Eur. Phys. J. B
ISSN:14346028
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14346028_v69_n1_p37_Rosso

Referencias:

  • Gammaitoni, L., Marchesoni, F., Menichella-Saetta, E., Santucci, S., (1989) Phys. Rev. Lett, 62, p. 349
  • Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F., (1998) Rev. Mod. Phys, 70, p. 223
  • Benzi, R., Parisi, G., Sutera, A., Vulpiani, A., (1982) Tellus, 34, p. 10
  • Benzi, R., Sutera, A., Vulpiani, A., (1981) J. Phys. A, 14, pp. L453
  • Wiesenfeld, K., Moss, F., (1995) Nature, 373, p. 6509
  • Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L., (2004) Phys. Rep, 392, p. 321
  • McNamara, B., Wiesenfeld, K., Roy, R., (1988) Phys. Rev. Lett, 60, p. 2626
  • Giacomelli, G., Marin, F., Rabbiosi, I., (1999) Phys. Rev. Lett, 82, p. 675
  • Badzey, R.L., Mohanty, P., (2005) Nature, 437, p. 995
  • Jung, P., Hanggi, P., (1991) Phys. Rev. A, 44, p. 8032
  • Douglass, J.K., Wilkens, L., Pantazelou, E., Moss, F., (1993) Nature, 365, p. 6444
  • Levin, J.E., Miller, J.P., (1996) Nature, 380, p. 6570
  • Collins, J.J., Imhoff, T.T., Grigg, P., (1996) Nature, 383, p. 770
  • Russell, D., Wilkens, L., Moss, F., (1999) Nature, 402, p. 291
  • Choi, M.H., Fox, R.F., Jung, P., (1998) Phys. Rev. E, 57, p. 6335
  • L. Gammaitoni, F. Marchesoni, S. Santucci, Phys. Rev. Lett. 74, (1995) 1052 (1995); Heneghan, C., Chow, C.C., Collins, J.J., Imhoff, T.T., Lowen, S.B., Teich, M.C., (1996) Phys. Rev. E, 54, pp. R2228
  • Bulsara, A.R., Zador, A., (1996) Phys. Rev. E, 54, pp. R2185
  • Neiman, A., Shulgin, B., Anishchenko, V., Ebeling, E., Schimansky-Geier, L., Freund, J., (1996) Phys. Rev. Lett, 76, p. 4299
  • Inchiosa, M.E., Robinson, J.W.C., Bulsara, A.R., (2000) Phys. Rev. Lett, 85, p. 3369
  • Goychuk, I., Hänggi, P., (2000) Phys. Rev. E, 61, p. 4272
  • Goychuk, I., (2001) Phys. Rev. E, 64, p. 021909
  • I. Goychuk, P. Hänggi, Eur. Phys. J. B (2009), DOI: 10.1140/epjb/e2009-00049-y; López-Ruiz, R., Mancini, H.L., Calbet, X., (1995) Phys. Lett. A, 209, p. 321
  • Martín, M.T., Plastino, A., Rosso, O.A., (2003) Phys. Lett. A, 311, p. 126
  • Lamberti, P.W., Martín, M.T., Plastino, A., Rosso, O.A., (2004) Physica A, 334, p. 119
  • For discussion of other simple alternatives of the disequilibrium Q and the corresponding advantages and disadvantages of each ones see [26; Witt, A., Neiman, A., Kurths, J., (1997) Phys. Rev. E, 55, p. 5050
  • Rosso, O.A., Masoller, C., (2009) Phys. Rev. E, , in press
  • Rosso, O.A., Larrondo, H., Martin, M.T., Plastino, A., Fuentes, M.A., (2007) Phys. Rev. Lett, 99, p. 154102
  • Shannon, C.E., (1948) Bell System Technical Journal, 27, p. 379
  • Grassberger, P., (1986) Int. J. Theo. Phys, 25, p. 907
  • Grassberger, P., (1986) Physica A, 140, p. 319
  • Crutchfield, J.P., Young, K., (1989) Phys. Rev. Lett, 63, p. 105
  • Wackerbauer, R., Witt, A., Altmanspacher, H., Kurths, J., Scheingraber, H., (1994) Chaos Solitons & Fractals, 4, p. 133
  • Feldman, D.P., Crutchfield, J.P., (1998) Phys. Lett. A, 238, p. 244
  • Shiner, J.S., Davison, M., Landsberg, P.T., (1999) Phys. Rev. E, 59, p. 1459
  • Kantz, H., Kurths, J., Meyer-Kress, G., (1998) Nonlinear Analysis of Physiological Data, , Springer, Berlin
  • Cover, T.M., Thomas, J.A., (1991) Elements of Information Theory, , Wiley, New York
  • Wootters, W.K., (1981) Phys. Rev. D, 23, p. 357
  • Martín, M.T., Plastino, A., Rosso, O.A., (2006) Physica A, 369, p. 439
  • Plastino, A.R., Plastino, A., (1996) Phys. Rev. E, 54, p. 4423
  • Calbet, X., López-Ruiz, R., (2001) Phys. Rev. E, 63, p. 066116
  • Rosso, O.A., Martín, M.T., Figliola, A., Keller, K., Plastino, A., (2006) Journal on Neuroscience Methods, 153, p. 163
  • Kowalski, A.M., Martín, M.T., Plastino, A., Rosso, O.A., (2007) Physica D, 233, p. 21
  • Zunino, L., Pérez, D.G., Martín, M.T., Plastino, A., Garavaglia, M., Rosso, O.A., (2007) Phys. Rev. E, 75, p. 031115
  • Bandt, C., Pompe, B., (2002) Phys. Rev. Lett, 88, p. 174102
  • Keller, K., Sinn, M., (2005) Physica A, 356, p. 114
  • Larrondo, H.A., Martín, M.T., González, C.M., Plastino, A., Rosso, O.A., (2006) Phys. Lett. A, 352, p. 421

Citas:

---------- APA ----------
Rosso, O.A. & Masoller, C. (2009) . Detecting and quantifying temporal correlations in stochastic resonance via information theory measures. European Physical Journal B, 69(1), 37-43.
http://dx.doi.org/10.1140/epjb/e2009-00146-y
---------- CHICAGO ----------
Rosso, O.A., Masoller, C. "Detecting and quantifying temporal correlations in stochastic resonance via information theory measures" . European Physical Journal B 69, no. 1 (2009) : 37-43.
http://dx.doi.org/10.1140/epjb/e2009-00146-y
---------- MLA ----------
Rosso, O.A., Masoller, C. "Detecting and quantifying temporal correlations in stochastic resonance via information theory measures" . European Physical Journal B, vol. 69, no. 1, 2009, pp. 37-43.
http://dx.doi.org/10.1140/epjb/e2009-00146-y
---------- VANCOUVER ----------
Rosso, O.A., Masoller, C. Detecting and quantifying temporal correlations in stochastic resonance via information theory measures. Eur. Phys. J. B. 2009;69(1):37-43.
http://dx.doi.org/10.1140/epjb/e2009-00146-y