Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The way in which information about behavior is represented at different levels of the motor pathway, remains among the fundamental unresolved problems of motor coding and sensorimotor integration. Insight into this matter is essential for understanding complex learned behaviors such as speech or birdsong. A major challenge in motor coding has been to identify an appropriate framework for characterizing behavior. In this work we discuss a novel approach linking biomechanics and neurophysiology to explore motor control of songbirds. We present a model of song production based on gestures that can be related to physiological parameters that the birds can control. This physical model for the vocal structures allows a reduction in the dimensionality of the behavior, being a powerful approach for studying sensorimotor integration. Our results also show how dynamical systems models can provide insight into neurophysiological analysis of vocal motor control. In particular, our work challenges the actual understanding of how the motor pathway of the songbird systems works and proposes a novel perspective to study neural coding for song production. © 2014, EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

Registro:

Documento: Artículo
Título:Low dimensional dynamics in birdsong production
Autor:Amador, A.; Mindlin, G.B.
Filiación:Department Physics, FCEyN, University of Buenos Aires and IFIBA-CONICET, Buenos Aires, 1428, Argentina
Palabras clave:Colloquium; Birds; Codes (symbols); Dynamical systems; Neurophysiology; Colloquium; Dynamical systems model; Low dimensional; Motor pathway; Physical model; Physiological parameters; Sensorimotor integration; Vocal structures; Physiological models
Año:2014
Volumen:87
Número:12
DOI: http://dx.doi.org/10.1140/epjb/e2014-50566-5
Título revista:European Physical Journal B
Título revista abreviado:Eur. Phys. J. B
ISSN:14346028
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14346028_v87_n12_p_Amador

Referencias:

  • Doupe, A.J., Kuhl, P.K., (1999) Ann. Rev. Neurosci, 22, p. 567
  • H.P. Zeigler, P. Marler, Neuroscience of Birdsong (Cambridge University Press, Cambridge, 2012); Mooney, R., (2009) Learn. Memory, 16, p. 655
  • G.B.Mindlin, R.Laje, The Physics of Birdsong (Springer-Verlag,Berlin, 2005); Gardner, T., Cecchi, G., Magnasco, M., Laje, R., Mindlin, G.B., (2001) Phys. Rev. Lett, 87, p. 208101
  • Mindlin, G.B., Gardner, T.J., Goller, F., Suthers, R., (2003) Phys. Rev. E, 68, p. 41908
  • Trevisan, M.A., Mindlin, G.B., Goller, F., (2006) Phys. Rev. Lett, 96, p. 58103
  • Amador, A., Sanz Perl, Y., Mindlin, G.B., Margoliash, D., (2013) Nature, 495, p. 59
  • Alonso, L.M., Alliende, J.A., Goller, F., Mindlin, G.B., (2009) Phys. Rev. E, 79, p. 41929
  • Perl, Y.S., Arneodo, E.M., Amador, A., Goller, F., Mindlin, G.B., (2011) Phys. Rev. E, 84, p. 051909
  • Amador, A., Goller, F., Mindlin, G.B., (2008) J. Neurophysiol, 99, p. 2383
  • Goller, F., Larsen, O.N., (1997) Proc. Natl. Acad. Sci. USA, 94, p. 14787
  • Titze, I.R., (1988) J. Acoust. Soc. Am, 83, p. 1536
  • Amador, A., Mindlin, G.B., (2008) Chaos, 18, p. 043123
  • S.H. Strogatz, Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry and Engineering (Perseus Books, Cambridge, 1994); Goller, F., Suthers, R.A., (1996) J. Neurophysiol, 76, p. 287
  • Amador, A., Margoliash, D., (2013) J. Neurosci, 33, p. 11136
  • J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, 1997); Sitt, J.D., Arneodo, E.M., Goller, F., Mindlin, G.B., (2010) Phys. Rev. E, 81, p. 31927
  • Sitt, J.D., Amador, A., Goller, F., Mindlin, G.B., (2008) Phys. Rev. E, 78, p. 011905
  • Fletcher, N.H., Riede, T., Suthers, R.A., (2006) J. Acoust. Soc. Am, 119, p. 1005
  • Troyer, T.W., (2013) Nature, 495, p. 56
  • Hahnloser, R.H.R., Kozhevnikov, A.A., Fee, M.S., (2002) Nature, 419, p. 65
  • Long, M.A., Fee, M.S., (2008) Nature, 456, p. 189
  • Goldin, M.A., Alonso, L.M., Alliende, J.A., Goller, F., Mindlin, G.B., (2013) PLoS One, 8, p. e67814
  • Hartley, R.S., Suthers, R.A., (1990) J. Neurobiol, 21, p. 1236
  • F.C. Hoppensteadt, E.M. Izhikevich, Weakly Connected Neural Networks (Springer, 1997); Riede, T., Goller, F., (2010) Brain Lang, 115, p. 69
  • Margoliash, D., (1986) J. Neurosci, 6, p. 1643
  • Margoliash, D., Konishi, M., (1985) Proc. Natl. Acad. Sci. USA, 82, p. 5997
  • Magnasco, M.O., Piro, O., Cecchi, G.A., (2009) Phys. Rev. Lett, 102, p. 258102

Citas:

---------- APA ----------
Amador, A. & Mindlin, G.B. (2014) . Low dimensional dynamics in birdsong production. European Physical Journal B, 87(12).
http://dx.doi.org/10.1140/epjb/e2014-50566-5
---------- CHICAGO ----------
Amador, A., Mindlin, G.B. "Low dimensional dynamics in birdsong production" . European Physical Journal B 87, no. 12 (2014).
http://dx.doi.org/10.1140/epjb/e2014-50566-5
---------- MLA ----------
Amador, A., Mindlin, G.B. "Low dimensional dynamics in birdsong production" . European Physical Journal B, vol. 87, no. 12, 2014.
http://dx.doi.org/10.1140/epjb/e2014-50566-5
---------- VANCOUVER ----------
Amador, A., Mindlin, G.B. Low dimensional dynamics in birdsong production. Eur. Phys. J. B. 2014;87(12).
http://dx.doi.org/10.1140/epjb/e2014-50566-5