Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A family of ErIII and ErIII–YbIII based nanophosphors, hosted in monophasic oxidic CeIV–GdIII binary solid solutions, was prepared. The samples were formulated with a constant ErIII content as the activator, with the eventual addition of YbIII as a sensitizer. The amorphous Ce0.94−xGdxEr0.06(OH)CO3⋅H2O and Ce0.94−xGdxEr0.05Yb0.01(OH)CO3⋅H2O precursors were prepared by following the urea method to obtain monodispersed spheres of tunable size ranging from 30 to 450 nm. After being decomposed at 1273 K under an atmosphere of air, the precursors of 200 nm in diameter evolved into monophasic polycrystalline particles preserving the parent shape and size. The role of the composition of the binary matrices in the emission properties was evaluated for two different excitation wavelengths (976 nm and 780 nm) based on the upconversion (UC) emission spectra and their dependence on the incident power. The yield of the UC process is discussed in the framework of established and novel alternative mechanisms. The number of vacancies and mainly the symmetry of the ErIII environment play major roles in the deactivation pathways of the UC emission mechanisms. However, the colours obtained by employing bare CeIV or GdIII hosts are preserved in the related monophasic CeIV-rich or GdIII-rich binary hosts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Registro:

Documento: Artículo
Título:CeIV–GdIII Mixed Oxides as Hosts for ErIII-Based Upconversion Phosphors
Autor:Sorbello, C.; Gross, P.; Strassert, C.A.; Jobbágy, M.; Barja, B.C.
Filiación:Departamento de Química Inorgánica Analítica y Química Física FCEyN-Universidad de Buenos Aires, INQUIMAE-CONICET, CABA, Ciudad Universitaria Pabellón 2C1428EHA, Argentina
Institute for Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Str. 9, Oldenburg, 26129, Germany
Physikalisches Institut and Center for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, Münster, 48149, Germany
Palabras clave:energy transfer; lanthanides; luminescence; photochemistry; solid-state structures
Año:2017
Volumen:18
Número:10
Página de inicio:1407
Página de fin:1414
DOI: http://dx.doi.org/10.1002/cphc.201601262
Título revista:ChemPhysChem
Título revista abreviado:ChemPhysChem
ISSN:14394235
CODEN:CPCHF
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_14394235_v18_n10_p1407_Sorbello

Referencias:

  • Sooklal, K., Cullum, B.S., Angel, S.M., Murphy, C.J., (1996) J. Phys. Chem., 100, pp. 4551-4555
  • Yi, G.S., Lu, H.C., Zhao, S.Y., Yue, G., Yang, W.J., Chen, D.P., Guo, L.H., (2004) Nano Lett., 4, pp. 2191-2196
  • Tissue, B.M., (1998) Chem. Mater., 10, pp. 2837-2845
  • Wang, F., Banerjee, D., Liu, Y.S., Chen, X.Y., Liu, X.G., (2010) Analyst, 135, pp. 1839-1854
  • Chatterjee, D.K., Rufaihah, A.J., Zhang, Y., (2008) Biomaterials, 29, pp. 937-943
  • Haase, M., Schafer, H., (2011) Angew. Chem. Int. Ed., 50, pp. 5808-5829
  • (2011) Angew. Chem., 123, pp. 5928-5950
  • Wang, F., Liu, X., (2009) Chem. Soc. Rev., 38, pp. 976-989
  • Wang, F., Liu, X.G., (2008) J. Am. Chem. Soc., 130, pp. 5642-5643
  • Chen, D., Zhou, Y., Wan, Z., Ji, Z., Huang, P., (2015) Dalton Trans., 44, pp. 5288-5293
  • Chen, D., Xu, M., Huang, P., (2016) Sens. Actuators B, 231, pp. 576-583
  • Vetrone, F., Boyer, J.C., Capobianco, J.A., Speghini, A., Bettinelli, M., (2003) Chem. Mater., 15, pp. 2737-2743
  • Patra, A., Friend, C.S., Kapoor, R., Prasad, P.N., (2002) J. Phys. Chem. B, 106, pp. 1909-1912
  • Heer, S., Lehmann, O., Haase, M., Gudel, H.U., (2003) Angew. Chem. Int. Ed., 42, pp. 3179-3182
  • (2003) Angew. Chem., 115, pp. 3288-3291
  • Sun, Y.J., Liu, H.J., Wang, X., Kong, X.G., Zhang, H., (2006) Chem. Mater., 18, pp. 2726-2732
  • Babu, S., Cho, J.-H., Dowding, J.M., Heckert, E., Komanski, C., Das, S., Colon, J., Seal, S., (2010) Chem. Commun., 46, pp. 6915-6917
  • Cho, J.H., Bass, M., Babu, S., Dowding, J.M., Self, W.T., Seal, S., (2012) J. Lumin., 132, pp. 743-749
  • Xu, L., Yu, Y., Li, X., Somesfalean, G., Zhang, Y., Gao, H., Zhang, Z., (2008) Opt. Mater., 30, pp. 1284-1288
  • Guo, H., Dong, N., Yin, M., Zhang, W.P., Lou, L.R., Xia, S.D., (2004) J. Phys. Chem. B, 108, pp. 19205-19209
  • Lei, Y.Q., Song, H.W., Yang, L.M., Yu, L.X., Liu, Z.X., Pan, G.H., Bai, X., Fan, L.B., (2005) J. Chem. Phys., 123, p. 174710
  • Setua, S., Menon, D., Asok, A., Nair, S., Koyakutty, M., (2010) Biomaterials, 31, pp. 714-729
  • Li, J.-G., Li, X., Sun, X., Ishigaki, T., (2008) J. Phys. Chem. C, 112, pp. 11707-11716
  • Chen, J., Patil, S., Seal, S., McGinnis, J.F., (2006) Nat. Nanotechnol., 1, pp. 142-150
  • Heckert, E.G., Karakoti, A.S., Seal, S., Self, W.T., (2008) Biomaterials, 29, pp. 2705-2709
  • Karakoti, A., Singh, S., Dowding, J.M., Seal, S., Self, W.T., (2010) Chem. Soc. Rev., 39, pp. 4422-4432
  • Sorbello, C., Barja, B.C., Jobbagy, M., (2014) J. Mater. Chem. C, 2, pp. 1010-1017
  • Artini, C., Pani, M., Carnasciali, M.M., Buscaglia, M.T., Plaisier, J.R., Costa, G.A., (2015) Inorg. Chem., 54, pp. 4126-4137
  • Hu, L.F., Ma, R.Z., Ozawa, T.C., Sasaki, T., (2009) Angew. Chem. Int. Ed., 48, pp. 3846-3849
  • (2009) Angew. Chem., 121, pp. 3904-3907
  • Wu, C., Qin, W., Qin, G., Zhao, D., Zhang, J., Huang, S., Lü, S., Lin, H., (2003) Appl. Phys. Lett., 82, pp. 520-522
  • Vecht, A., Gibbons, C., Davies, D., Jing, X., Marsh, P., Ireland, T., Silver, J., Barber, D., (1999) J. Vac. Sci. Technol. B, 17, pp. 750-757
  • Qiu, H., Chen, G., Fan, R., Cheng, C., Hao, S., Chen, D., Yang, C., (2011) Chem. Commun., 47, pp. 9648-9650
  • Soler-Iltia, G., Jobbagy, M., Candal, R.J., Regazzoni, A.E., Blesa, M.A., (1998) J. Dispersion Sci. Technol., 19, pp. 207-228
  • Matijevic, E., Hsu, W.P., (1987) J. Colloid Interface Sci., 118, pp. 506-523
  • Aiken, B., Hsu, W.P., Matijevic, E., (1988) J. Am. Ceram. Soc., 71, pp. 845-853
  • Rojas, T.C., Ocana, M., (2002) Scr. Mater., 46, pp. 655-660
  • Jobbágy, M., Sorbello, C., Sileo, E.E., (2009) J. Phys. Chem. C, 113, pp. 10853-10857
  • Tian, Y., Tian, B., Cui, C., Huang, P., Wang, L., Chen, B., (2015) RSC Adv., 5, pp. 14123-14128
  • Kang, Z.C., Eyring, L., (1990) J. Solid State Chem., 88, pp. 303-323
  • Nakamura, A., Imai, K., Igawa, N., Okamoto, Y., Yamamoto, E., Matsukawa, S., Takahashi, M., (2012) Hyperfine Interact., 207, pp. 67-71
  • Jobbágy, M., Marino, F., Schönbrod, B., Baronetti, G., Laborde, M., (2006) Chem. Mater., 18, pp. 1945-1950
  • Artini, C., Pani, M., Lausi, A., Masini, R., Costa, G.A., (2014) Inorg. Chem., 53, pp. 10140-10149
  • Artini, C., Costa, G.A., Pani, M., Lausi, A., Plaisier, J., (2012) J. Solid State Chem., 190, pp. 24-28
  • Shannon, R.D., (1976) Acta Crystallogr. Sect. A, 32, pp. 751-767
  • Hong, S.J., Virkar, A.V., (1995) J. Am. Ceram. Soc., 78, pp. 433-439
  • Kim, D.J., (1989) J. Am. Ceram. Soc., 72, pp. 1415-1421
  • Li, J.-G., Ikegami, T., Wang, Y., Mori, T., (2003) J. Am. Ceram. Soc., 86, pp. 915-921
  • Li, J.G., Li, X.D., Sun, X.D., Ikegami, T., Ishigaki, T., (2008) Chem. Mater., 20, pp. 2274-2281
  • Auzel, F., (2004) Chem. Rev., 104, pp. 139-173
  • (2000) Upconversion Processes in Transition Metal and Rare Earth Metal Systems, D. R. Gamelin, H. U. Gudel in Topics in Current Chemistry, pp. 1-56. , vol 214, pp
  • Chen, X.Y., Ma, E., Liu, G.K., (2007) J. Phys. Chem. C, 111, pp. 10404-10411
  • Guo, H., (2007) J. Solid State Chem., 180, pp. 127-131
  • Guo, H., Li, Y., Wang, D., Zhang, W., Yin, M., Lou, L., Xia, S., (2004) J. Alloys Compd., 376, pp. 23-27
  • Xiao, S., Yang, X., Liu, Z., Yan, X.H., (2004) J. Appl. Phys., 96, pp. 1360-1364
  • Pollnau, M., Gamelin, D.R., Luthi, S.R., Gudel, H.U., Hehlen, M.P., (2000) Phys. Rev. B, 61, pp. 3337-3346
  • Goldner, P., Pelle, F., (1996) Opt. Mater., 5, pp. 239-249
  • Chen, G.Y., Liang, H.J., Liu, H.C., Somesfalean, G., Zhang, Z.G., (2009) J. Appl. Phys., 105, p. 114315
  • Sivakumar, S., Van Veggel, F.C.J.M., May, P.S., (2007) J. Am. Chem. Soc., 129, pp. 620-625
  • Nakayama, M., Martin, M., (2009) Phys. Chem. Chem. Phys., 11, pp. 3241-3249
  • Sen, S., Avila-Paredes, H.J., Kim, S., (2008) J. Mater. Chem., 18, pp. 3915-3917
  • Kim, N.J., Stebbins, J.F., (2007) Chem. Mater., 19, pp. 5742-5747
  • Tiseanu, C., Parvulescu, V.I., Sanchez-Dominguez, M., Boutonnet, M., (2012) J. Appl. Phys., 112, p. 013521
  • Tiseanu, C., Cojocaru, B., Avram, D., Parvulescu, V.I., Vela-Gonzalez, A.V., Sanchez-Dominguez, M., (2013) J. Phys. D, 46, p. 275302
  • Shehata, N., Meehan, K., Hudait, M., Jain, N., (2012) J. Nanopart. Res., 14, p. 1173

Citas:

---------- APA ----------
Sorbello, C., Gross, P., Strassert, C.A., Jobbágy, M. & Barja, B.C. (2017) . CeIV–GdIII Mixed Oxides as Hosts for ErIII-Based Upconversion Phosphors. ChemPhysChem, 18(10), 1407-1414.
http://dx.doi.org/10.1002/cphc.201601262
---------- CHICAGO ----------
Sorbello, C., Gross, P., Strassert, C.A., Jobbágy, M., Barja, B.C. "CeIV–GdIII Mixed Oxides as Hosts for ErIII-Based Upconversion Phosphors" . ChemPhysChem 18, no. 10 (2017) : 1407-1414.
http://dx.doi.org/10.1002/cphc.201601262
---------- MLA ----------
Sorbello, C., Gross, P., Strassert, C.A., Jobbágy, M., Barja, B.C. "CeIV–GdIII Mixed Oxides as Hosts for ErIII-Based Upconversion Phosphors" . ChemPhysChem, vol. 18, no. 10, 2017, pp. 1407-1414.
http://dx.doi.org/10.1002/cphc.201601262
---------- VANCOUVER ----------
Sorbello, C., Gross, P., Strassert, C.A., Jobbágy, M., Barja, B.C. CeIV–GdIII Mixed Oxides as Hosts for ErIII-Based Upconversion Phosphors. ChemPhysChem. 2017;18(10):1407-1414.
http://dx.doi.org/10.1002/cphc.201601262