Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Environmental context Natural organic materials, such as humic substances, play key roles in the binding and environmental fate of metals. We study the interaction of protons and metal ions with humic acids, and show changes to the mechanical properties of the particles and their capability to fix metal pollutants. The results will help refine current models of metal behaviour in the environment. Abstract The swelling and aggregation of Leonardite humic acid, due to acid-base and Pb II binding interactions, was studied through atomic force microscopy (AFM) tapping mode measurements and correlated with potentiometric experiments. These experiments allowed determination of parameters for the non-ideal competitive adsorption (NICA)-elastic polyelectrolyte network (EPN) model, which predicts size and electrostatic potential changes. AFM observations showed growth of agglomerates at low pH values. Height distribution analysis allowed discrimination of single particles from agglomerates. The size of individual particles increased slightly with pH increase. Agglomeration was evaluated through the dispersity, which increased at pH < 5, concomitant with a decrease of the electrostatic repulsion and an increase of protonated carboxylic groups, thus the agglomeration is attributed to both factors. In the presence of Pb II, agglomeration is observed to rise strongly with the increase in metal concentration, which is attributed to bridging of humic particles by Pb II ions. The AFM ex situ results suggest consistency between NICA-EPN predictions and experimental behaviour. © 2018 CSIRO.

Registro:

Documento: Artículo
Título:Swelling and aggregation of Leonardite upon pH change and Pb II binding: An AFM study
Autor:Copello, F.D.R.; Lizarraga, L.; Orsetti, S.; Molina, F.V.
Filiación:INQUIMAE, Instituto de Química Física de Materiales, Ambiente y Energía, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, C1428EGA, Argentina
CIBION, Centro de Investigaciones en Bionanociencias, Consejo Nacional de Investigaciones Científicas y Técnicas 'Elizabeth Jares Erijman', Buenos Aires, C1425FQD, Argentina
Institut für Geowissenschaften, Zentrum für Angewandte Geowissenschaften, Eberhard-Karls Universität Tübingen, Tübingen, 72074, Germany
Palabras clave:environmental colloids; metals; soil chemistry; adsorption; atomic force microscopy; colloid; concentration (composition); environmental fate; experimental study; humic acid; humic substance; ion; lead; pH; soil chemistry
Año:2018
Volumen:15
Número:3
Página de inicio:162
Página de fin:170
DOI: http://dx.doi.org/10.1071/EN17224
Título revista:Environmental Chemistry
Título revista abreviado:Environ. Chem.
ISSN:14482517
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14482517_v15_n3_p162_Copello

Referencias:

  • Baigorri, R., Fuentes, M., González-Gaitano, G., García-Mina, J.M., Analysis of molecular aggregation in humic substances in solution (2007) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302, pp. 301-306
  • Baldssock, J.A., Nelson, P.N., Soil organic matter (1999) Handbook of Soil Science, pp. B75-B84. , (Ed. ML Sumner). (CRC: Boca Raton, FL)
  • Balnois, E., Wilkinson, K.J., Sample preparation techniques for the observation of environmental biopolymers by atomic force microscopy (2002) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 207, pp. 229-242
  • Balnois, E., Wilkinson, K.J., Lead, J.R., Buffle, J., Atomic force microscopy of humic substances: Effects of pH and ionic strength (1999) Environmental Science & Technology, 33, pp. 3911-3917
  • Benedetti, M.F., Milne, C.J., Kinniburgh, D.G., Van Riemsdijk, W.H., Koopal, L.K., Metal ion binding to humic substances: Application of the nonideal competitive adsorption model (1995) Environmental Science & Technology, 29, pp. 446-457
  • Buffle, J., Altmann, R.S., Filella, M., Tessier, A., Complexation by natural heterogeneous compounds: Site occupation distribution functions, a normalized description of metal complexation (1990) Geochimica et Cosmochimica Acta, 54, pp. 1535-1553
  • Chen, C., Wang, X., Jiang, H., Hu, W., Direct observation of macromolecular structures of humic acid by AFM and SEM (2007) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302, pp. 121-125
  • Chilom, G., Rice, J.A., Structural organization of humic acid in the solid state (2009) Langmuir, 25, pp. 9012-9015
  • Da Costa Saab, S., Carvalho, E.R., Bernardes Filho, R., De Moura, M.R., Martin-Neto, L., Mattoso, L.H.C., PH effect in aquatic fulvic acid from a Brazilian river (2010) Journal of the Brazilian Chemical Society, 21, pp. 1490-1496
  • David, C., Mongin, S., Rey-Castro, C., Galceran, J., Companys, E., Garces, J.L., Salvador, J., Mas, F., Competition effects in cation binding to humic acid: Conditional affinity spectra for fixed total metal concentration conditions (2010) Geochimica et Cosmochimica Acta, 74, pp. 5216-5227
  • Duval, J.F.L., Wilkinson, K.J., Van Leeuwen, H.P., Buffle, J., Humic substances are soft and permeable: Evidence from their electrophoretic mobilities (2005) Environmental Science & Technology, 39, pp. 6435-6445
  • García, R., Perez, R., Dynamic atomic force microscopy methods (2002) Surface Science Reports, 47, pp. 197-301
  • Goldberg, S., Equations and models describing adsorption processes in soils (2005) Chemical Processes in Soils, pp. 489-518. , (Eds MA Tabatabai, DL Sparks). (Soil Science Society of America: Madison, WI)
  • Gorham, J.M., Wnuk, J.D., Shin, M., Fairbrother, H., Adsorption of natural organic matter onto carbonaceous surfaces: Atomic force microscopy study (2007) Environmental Science & Technology, 41, pp. 1238-1244
  • Guo, J., Ma, J., AFM study on the sorbedNOMand its fractions isolated from River Songhua (2006) Water Research, 40, pp. 1975-1984
  • Gustafsson, J.P., Pechova, P., Berggren, D., Modeling metal binding to soils: The role of natural organic matter (2003) Environmental Science & Technology, 37, pp. 2767-2774
  • Israelachvili, J.N., (2010) Intermolecular and Surface Forces, 3rd Edn, , (Academic Press: Amsterdam)
  • Kinniburgh, D.G., Milne, C.J., Benedetti, M.F., Pinheiro, J.P., Filius, J., Koopal, L.K., Van Riemsdijk, W.H., Metal ion binding by humic acid: Application of the NICA-Donnan model (1996) Environmental Science & Technology, 30, pp. 1687-1698
  • Kinniburgh, D.G., Van Riemsdijk, W.H., Koopal, L.K., Borkovec, M., Benedetti, M.F., Avena, M.J., Ion binding to natural organic matter: Competition, heterogeneity, stoichiometry and thermodynamic consistency (1999) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 151, pp. 147-166
  • Lenoir, T., Matynia, A., Manceau, A., Convergence-optimized procedure for applying the NICA-Donnan model to potentiometric titrations of humic substances (2010) Environmental Science & Technology, 44, pp. 6221-6227
  • Liu, C., Frenkel, A.I., Vairavamurthy, A., Huang, P.M., Sorption of cadmium on humic acid: Mechanistic and kinetic studies with atomic force microscopy and X-ray absorption fine structure spectroscopy (2001) Canadian Journal of Soil Science, 81, pp. 337-348
  • Matynia, A., Lenoir, T., Causse, B., Spadini, L., Jacquet, T., Manceau, A., Semi-empirical proton binding constants for natural organic matter (2010) Geochimica et Cosmochimica Acta, 74, pp. 1836-1851
  • Milne, C.J., Kinniburgh, D.G., De Wit, J.C.M., Van Riemsdijk, W.H., Koopal, L.K., Analysis of proton binding by a peat humic acid using a simple electrostatic model (1995) Geochimica et Cosmochimica Acta, 59, pp. 1101-1112
  • Milne, C.J., Kinniburgh, D.G., Tipping, E., Generic NICA-Donnan model parameters for proton binding by humic substances (2001) Environmental Science & Technology, 35, pp. 2049-2059
  • Milne, C.J., Kinniburgh, D.G., Van Riemsdijk, W.H., Tipping, E., Generic NICA-Donnan model parameters for metal-ion binding by humic substances (2003) Environmental Science & Technology, 37, pp. 958-971
  • Molina, F.V., (2013) Soil Colloids: Properties and Ion Binding, , (CRC Press: Boca Raton, FL)
  • Montenegro, A.C., Orsetti, S., Molina, F.V., Modelling proton and metal binding to humic substances with the NICA-EPN model (2014) Environmental Chemistry, 11, pp. 318-332
  • Orsetti, S., Andrade, E.M., Molina, F.V., Modeling ion binding to humic substances: Elastic polyelectrolyte network model (2010) Langmuir, 26, pp. 3134-3144
  • Orsetti, S., Marco-Brown, J.L., Andrade, E.M., Molina, F.V., Pb (II) binding to humic substances: An equilibrium and spectroscopic study (2013) Environmental Science & Technology, 47, pp. 8325-8333
  • Plaschke, M., Rothe, J., Schäfer, T., Denecke, M.A., Dardenne, K., Pompe, S., Heise, K.-H., Combined AFM and STXM in situ study of the influence of Eu (III) on the agglomeration of humic acid (2002) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 197, pp. 245-256
  • Puy, J., Galceran, J., Huidobro, C., Companys, E., Samper, N., Garces, J.L., Mas, F., Conditional affinity spectra of Pb2+-humic acid complexation from data obtained with AGNES (2008) Environmental Science & Technology, 42, pp. 9289-9295
  • Puy, J., Huidobro, C., David, C., Rey-Castro, C., Salvador, J., Companys, E., Garces, J.L., Mas, F., Conditional affinity spectra underlying NICA isotherm (2009) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347, pp. 156-166
  • Ritchie, J.D., Perdue, E.M., Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter (2003) Geochimica et Cosmochimica Acta, 67, pp. 85-96
  • Senesi, N., Loffredo, E., The chemistry of soil organic matter (1998) Soil Physical Chemistry, pp. 239-370. , (Ed. DL Sparks). (CRC Press: Boca Raton, FL)
  • Simpson, A.J., Kingery, W.L., Hayes, M.H., Spraul, M., Humpfer, E., Dvortsak, P., Kerssebaum, R., Hofmann, M., Molecular structures and associations of humic substances in the terrestrial environment (2002) Naturwissenschaften, 89, pp. 84-88
  • Sutton, R., Sposito, G., Molecular structure in soil humic substances: The new view (2005) Environmental Science & Technology, 39, pp. 9009-9015
  • Tipping, E., Humic ion-binding model VI: An improved description of the interactions of protons and metal ions with humic substances (1998) Aquatic Geochemistry, 4, pp. 3-47
  • Wershaw, R.L., (2004) Evaluation of Conceptual Models of Natural Organic Matter (Humus) from a Consideration of the Chemical and Biochemical Processes of Humification (Scientific Investigations Report No. 2004-5121), , USGS, Denver, CO
  • Zhong, Q., Inniss, D., Kjoller, K., Elings, V.B., Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy (1993) Surface Science Letters, 290, pp. L688-L692

Citas:

---------- APA ----------
Copello, F.D.R., Lizarraga, L., Orsetti, S. & Molina, F.V. (2018) . Swelling and aggregation of Leonardite upon pH change and Pb II binding: An AFM study. Environmental Chemistry, 15(3), 162-170.
http://dx.doi.org/10.1071/EN17224
---------- CHICAGO ----------
Copello, F.D.R., Lizarraga, L., Orsetti, S., Molina, F.V. "Swelling and aggregation of Leonardite upon pH change and Pb II binding: An AFM study" . Environmental Chemistry 15, no. 3 (2018) : 162-170.
http://dx.doi.org/10.1071/EN17224
---------- MLA ----------
Copello, F.D.R., Lizarraga, L., Orsetti, S., Molina, F.V. "Swelling and aggregation of Leonardite upon pH change and Pb II binding: An AFM study" . Environmental Chemistry, vol. 15, no. 3, 2018, pp. 162-170.
http://dx.doi.org/10.1071/EN17224
---------- VANCOUVER ----------
Copello, F.D.R., Lizarraga, L., Orsetti, S., Molina, F.V. Swelling and aggregation of Leonardite upon pH change and Pb II binding: An AFM study. Environ. Chem. 2018;15(3):162-170.
http://dx.doi.org/10.1071/EN17224