Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

To enrich the dynamics of mathematical models of angiogenesis, all mechanisms involved are time-dependent. We also assume that the tumor cells enter the mechanisms of angiogenic stimulation and inhibition with some delays. The models under study belong to a special class of nonlinear nonautonomous systems with delays. Explicit sufficient and necessary conditions for the existence of the positive periodic solutions were obtained via topological methods. Numerical examples illustrate our findings. Some open problems are presented for further studies. © 2011 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Periodic solutions of angiogenesis models with time lags
Autor:Amster, P.; Berezansky, L.; Idels, L.
Filiación:Universidad de Buenos Aires, Departamento de Matemática, Ciudad Universitaria - Pab. I, 1428 - Buenos Aires, Argentina
Department of Mathematics, Ben-Gurion University of Negev, Beer-Sheva 84105, Israel
Department of Mathematics, Vancouver Island University, 900 Fifth St., Nanaimo, BC, V9S5S5, Canada
Palabras clave:A priori estimates; Angiogenesis; Existence of positive periodic solutions; LeraySchauder degree methods; Nonlinear nonautonomous delay differential equations; Second order Liénard type equation; A-priori estimates; Angiogenesis; Existence of positive periodic solutions; LeraySchauder degree methods; Nonautonomous; Second orders; Differential equations; Differentiation (calculus); Mathematical models; Nonlinear equations; Problem solving
Año:2012
Volumen:13
Número:1
Página de inicio:299
Página de fin:311
DOI: http://dx.doi.org/10.1016/j.nonrwa.2011.07.035
Título revista:Nonlinear Analysis: Real World Applications
Título revista abreviado:Nonlinear Anal. Real World Appl.
ISSN:14681218
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14681218_v13_n1_p299_Amster

Referencias:

  • Folkman, J., Angiogenesis (2003) Encyclopedia of Genetics, pp. 66-73
  • Folkman, J., Klagsbrun, M., Angiogenic factors (1987) Science, 235 (4787), pp. 442-447
  • Liersch, R., Berdel, W., Kessler, T., Angiogenesis inhibition (2010) Recent Results in Cancer Research, 17, p. 231. , 1st edition
  • Hahnfeldt, P., Panigrahy, D., Folkman, J., Hlatky, L., Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy (1999) Cancer Research, 59 (19), pp. 4770-4775
  • Andersen, L.K., Mackey, M.C., Resonance in periodic chemotherapy: A case study of acute myelogenous leukemia (2001) Journal of Theoretical Biology, 209 (1), pp. 113-130. , DOI 10.1006/jtbi.2000.2255
  • Liu, Z., Zhong, S., Yin, C., Chen, W., Permanence, extinction and periodic solutions in a mathematical model of cell populations affected by periodic radiation (2011) Applied Mathematics Letters, 24, pp. 1745-1750
  • Swierniak, A., Kimmel, M., Smieja, J., Mathematical modeling as a tool for planning anticancer therapy (2009) European Journal of Pharmacology, 625, pp. 108-121
  • Macklin, P., Lowengrub, J., Nonlinear simulation of the effect of microenvironment on tumor growth (2007) Journal of Theoretical Biology, 245 (4), pp. 677-704. , DOI 10.1016/j.jtbi.2006.12.004, PII S0022519306005649
  • Kuang, Y., (1993) Delay Differential Equations with Applications in Population Dynamics, 191. , Mathematics in Science and Engineering Academic Press, Inc. Boston, MA
  • Andrew, S.M., Baker, C.T.H., Bocharov, G.A., Rival approaches to mathematical modelling in immunology (2007) Journal of Computational and Applied Mathematics, 205 (2), pp. 669-686. , DOI 10.1016/j.cam.2006.03.035, PII S037704270600392X
  • Banerjee, S., Sarkar, R.R., Delay-induced model for tumor-immune interaction and control of malignant tumor growth (2008) BioSystems, 91 (1), pp. 268-288. , DOI 10.1016/j.biosystems.2007.10.002, PII S0303264707001499
  • Byrne, H.M., The effect of time delays on the dynamics of avascular tumor growth (1997) Mathematical Biosciences, 144 (2), pp. 83-117. , DOI 10.1016/S0025-5564(97)00023-0, PII S0025556497000230
  • D'Onofrio, A., Gatti, F., Cerrai, P., Freschi, L., Delay-induced oscillatory dynamics of tumour immune system interaction (2010) Mathematical and Computer Modelling, 51, pp. 572-591
  • Xu, S., Analysis of a delayed mathematical model for tumor growth (2010) Nonlinear Analysis: Real World Applications, 11, pp. 4121-4127
  • Sachs, R.K., Hlatky, L.R., Hahnfeldt, P., Simple ODE models of tumor growth and anti-angiogenic or radiation treatment (2001) Mathematical and Computer Modelling, 33 (12-13), pp. 1297-1305. , DOI 10.1016/S0895-7177(00)00316-2, PII S0895717700003162
  • Restsky, M.W., Swartzendruber, D.E., Wardwell, R.H., Bame, P.D., Is Gompertzian or exponential kinetics a valid description of individual human cancer growth? (1990) Medical Hypotheses, 33 (2), pp. 95-106. , DOI 10.1016/0306-9877(90)90186-I
  • Araujo, R.P., McElwain, D.L.S., A history of the study of solid tumour growth: The contribution of mathematical modelling (2004) Bulletin of Mathematical Biology, 66 (5), pp. 1039-1091. , DOI 10.1016/j.bulm.2003.11.002, PII S0092824003001265
  • D'Onofrio, A., Metamodeling tumor immune system interaction, tumor evasion and immunotherapy (2008) Mathematical and Computer Modelling, 47, pp. 614-637
  • Amster, P., Berezansky, L., Idels, L., Stability of hahnfeldt angiogenesis models with time lags (2011) Mathematical and Computer Modelling, , arxiv:1105.3260v1
  • Berezansky, L., Braverman, E., Domoshnitsky, A., Stability of the second order delay differential equations with a damping term (2008) Differential Equations and Dynamical Systems, 16, pp. 3-24
  • Diblik, J., Koksch, N., Sufficient conditions for the existence of global solutions of delayed differential equations (2006) Journal of Mathematical Analysis and Applications, 318 (2), pp. 611-625. , DOI 10.1016/j.jmaa.2005.06.020, PII S0022247X05005664
  • Gyori, I., Hartung, F., Fundamental solution and asymptotic stability of linear delay differential equations (2006) Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 13 (2), pp. 261-287
  • Krisztin, T., Global dynamics of delay differential equations (2008) Periodica Mathematica Hungarica, 56, pp. 83-95
  • Muroya, Y., Global stability for separable nonlinear delay differential systems (2007) Journal of Mathematical Analysis and Applications, 326 (1), pp. 372-389. , DOI 10.1016/j.jmaa.2006.01.094, PII S0022247X06002277
  • Sherera, E., Hannemanna, R., Rundellb, A., Ramkrishnaa, D., Analysis of resonance chemotherapy in leukemia treatment via multi-staged population balance models (2006) Journal of Theoretical Biology, 240, pp. 648-661
  • Alzabut, J., Nieto, J., Stamov, G., Existence and exponential stability of positive almost periodic solutions for a model of hematopoiesis (2009) Boundary Value Problems, pp. 1-10
  • Bellouquid, A., De Angelis, E., From kinetic models of multicellular growing systems to macroscopic biological tissue models (2011) Nonlinear Analysis: Real World Applications, 12, pp. 1111-1122
  • Delgado, M., Gayte, I., Morales-Rodrigo, C., Suarez, A., An angiogenesis model with nonlinear chemotactic response and flux at the tumor boundary (2010) Nonlinear Analysis: Theory, Methods & Applications, 72, pp. 330-347
  • Delgado, M., Morales-Rodrigo, C., Suarez, A., Tello, J., On a parabolic-elliptic chemotactic model with coupled boundary conditions (2010) Nonlinear Analysis: Real World Applications, 11, pp. 3884-3902
  • Ito, A., Gokieli, M., Niezgodka, M., Szyman'Ska, Z., Local existence and uniqueness of solutions to approximate systems of 1D tumor invasion model (2010) Nonlinear Analysis: Real World Applications, 11, pp. 3555-3566
  • Kassara, K., Moustafid, A., Angiogenesis inhibition and tumor-immune interactions with chemotherapy by a control set-valued method (2011) Mathematical Biosciences, 231, pp. 135-143
  • Tao, Y., Global existence for a haptotaxis model of cancer invasion with tissue remodeling (2011) Nonlinear Analysis: Real World Applications, 12, pp. 418-435
  • Wei, X., Cui, S., Existence and uniqueness of global solutions for a mathematical model of antiangiogenesis in tumor growth (2008) Nonlinear Analysis: Real World Applications, 9, pp. 1827-1836
  • Wei, X., Guo, C., Global existence for a mathematical model of the immune response to cancer (2010) Nonlinear Analysis: Real World Applications, 11, pp. 3903-3911
  • Lloyd, N., (1978) Degree Theory, , Cambridge University. Press Cambridge
  • Mawhin, J., (1979) Topological Degree Methods in Nonlinear Boundary Value Problems, 40. , CBMS Regional Conference Series in Mathematics Expository lectures from the CBMS Regional Conference held at Harvey Mudd College, Claremont, Calif., June 915, 1977 American Mathematical Society Providence, RI
  • Ronto, M., Trofimchuk, S., Numerical-analytic method for non-linear differential equations (1998) Public University of Miskolc, Series D, 38, pp. 97-116

Citas:

---------- APA ----------
Amster, P., Berezansky, L. & Idels, L. (2012) . Periodic solutions of angiogenesis models with time lags. Nonlinear Analysis: Real World Applications, 13(1), 299-311.
http://dx.doi.org/10.1016/j.nonrwa.2011.07.035
---------- CHICAGO ----------
Amster, P., Berezansky, L., Idels, L. "Periodic solutions of angiogenesis models with time lags" . Nonlinear Analysis: Real World Applications 13, no. 1 (2012) : 299-311.
http://dx.doi.org/10.1016/j.nonrwa.2011.07.035
---------- MLA ----------
Amster, P., Berezansky, L., Idels, L. "Periodic solutions of angiogenesis models with time lags" . Nonlinear Analysis: Real World Applications, vol. 13, no. 1, 2012, pp. 299-311.
http://dx.doi.org/10.1016/j.nonrwa.2011.07.035
---------- VANCOUVER ----------
Amster, P., Berezansky, L., Idels, L. Periodic solutions of angiogenesis models with time lags. Nonlinear Anal. Real World Appl. 2012;13(1):299-311.
http://dx.doi.org/10.1016/j.nonrwa.2011.07.035