Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We analyze the possibility of primordial magnetic field amplification by a stochastic large scale kinematic dynamo during reheating. We consider a charged scalar field minimally coupled to gravity. During inflation this field is assumed to be in its vacuum state. At the transition to reheating the state of the field changes to a many particle/anti-particle state. We characterize that state as a fluid flow of zero mean velocity but with a stochastic velocity field. We compute the scale-dependent Reynolds number Re(k), and the characteristic times for decay of turbulence, td and pair annihilation ta, finding ta ≪ td. We calculate the rms value of the kinetic helicity of the flow over a scale Γ and show that it does not vanish. We use this result to estimate the amplification factor of a seed field from the stochastic kinematic dynamo equations. Although this effect is weak, it shows that the evolution of the cosmic magnetic field from reheating to galaxy formation may well be more complex than as dictated by simple flux freezing. © 2010 IOP Publishing Ltd and SISSA.

Registro:

Documento: Artículo
Título:Primordial magnetic field amplification from turbulent reheating
Autor:Calzetta, E.; Kandus, A.
Filiación:Departamento de Física, FCEyN-UBA and IFIBA-CONICET, Cdad. Universitaria, Buenos Aires, Argentina
LATO - DCET - UESC, Rodovia Ilhéus-Itabuna, km 16 s/n, CEP: 45662-900, Salobrinho, Ilhéus-BA, Brazil
Palabras clave:Cosmic magnetic fields theory; Magnetohydrodynamics
Año:2010
Volumen:2010
Número:8
DOI: http://dx.doi.org/10.1088/1475-7516/2010/08/007
Título revista:Journal of Cosmology and Astroparticle Physics
Título revista abreviado:J. Cosmol. Astroparticle Phys.
ISSN:14757516
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14757516_v2010_n8_p_Calzetta

Referencias:

  • Brandenburg, A., Subramanian, K., Astrophysical magnetic fields and nonlinear dynamo theory (2005) Phys. Rept., 417, p. 1. , [astro-ph/0405052] [SPIRES]
  • Calzetta, E.A., Kandus, A., Cosmologial Magnetic Field Amplification Around Z 100, , astro-ph/9901009 [SPIRES]
  • Wolfe, A.M., Jorgenson, R.A., Robishaw, T., Heiles, C., Prochaska, J.X., An 84 microGauss Magnetic Field in a Galaxy at Redshift z=0.692 (2008) Nature, 455, p. 638. , [arXiv:0811.2408] [SPIRES]
  • Bernet, M.L., Miniati, F., Lilly, S.J., Kronberg, P.P., Dessauges-Zavadsky, M., Strong magnetic fields in normal galaxies at high redshifts (2008) Nature, 454, p. 302. , [arXiv: 0807. 3347] [SPIRES]
  • Kronberg, P.P., A global probe of cosmic magnetic fields to high redshifts (2008) Astrophys. J., 676, p. 7079. , [arXiv : 0712.0435] [SPIRES]
  • Hogan, C.J., Magnetohydrodynamic effects of a first-order cosmological phase transition (1983) Phys. Rev. Lett, 51, p. 1488. , [SPIRES]
  • Quashnock, J., Loeb, A., Spergel, D., Magnetic field generation during the cosmological QCD phase transition (1989) Astrophys. J., 344, pp. L49
  • Cheng, B.-L., Olinto, A.V., Primordial magnetic fields generated in the quark - Hadron transition (1994) Phys. Rev., D 50, p. 2421. , [SPIRES]
  • Sigl, G., Olinto, A.V., Jedamzik, K., Primordial magnetic fields from cosmological first order phase transitions (1997) Phys. Rev., D 55, p. 4582. , [astro-ph/9610201] [SPIRES]
  • Grasso, D., Rubinstein, H.R., Magnetic fields in the early universe (2001) Phys. Rept., 348, p. 163. , [astro-ph/0009061] [SPIRES]
  • Widrow, L.M., Origin of galactic and extragalactic magnetic fields (2002) Rev. Mod. Phys., 74, p. 775. , [astro-ph/0207240] [SPIRES]
  • Turner, M.S., Widrow, L.M., Inflation produced, large scale magnetic fields (1988) Phys. Rev., D 37, p. 2743. , [SPIRES]
  • Mazzitelli, F.D., Spedalieri, F.M., Scalar electrodynamics and primordial magnetic fields (1995) Phys. Rev., D 52, p. 6694. , [astro-ph/9505140] [SPIRES]
  • Tsagas, C.G., Kandus, A., Superadiabatic-type magnetic amplification in conventional cosmology (2005) Phys. Rev., D 71, p. 123506. , [astro-ph/0504089] [SPIRES]
  • Kunze, K.E., Primordial magnetic fields and nonlinear electrodynamics (2008) Phys. Rev., D 77, p. 023530. , [arXiv:0710.2435] [SPIRES]
  • Calzetta, E.A., Kandus, A., Mazzitelli, F.D., Primordial magnetic fields induced by cosmological particle creation (1998) Phys. Rev., D 57, p. 7139. , [astro-ph/9707220] [SPIRES]
  • Kandus, A., Calzetta, E.A., Mazzitelli, F.D., Wagner, C.E.M., Cosmological magnetic fields from gauge mediated supersymmetry-breaking models (2000) Phys. Lett., B 472, p. 287. , [hep-ph/9908524] [SPIRES]
  • Giovannini, M., Shaposhnikov, M.E., (2000) Primordial Magnetic Fields from Inflation?, Phys. Rev., 62, p. 103512. , [hep-ph/0004269][SPIRES]
  • Calzetta, E.A., Kandus, A., (2002) Self Consistent Estimates of Magnetic Fields from Reheating, Phys. Rev., 65, p. 063004. , [astro-ph/0110341][SPIRES]
  • Maroto, A.L., (2001) Primordial Magnetic Fields from Metric Perturbations, Phys. Rev., 64, p. 083006. , [hep-ph/0008288][SPIRES]
  • Calzetta, E., Hu, B.-L., (2008) Nonequilibrium Quantum Field Theory, , Cambridge University Press, Cambridge U.K
  • Khlebnikov, S.Y., Tkachev, I.I., Classical decay of inflaton (1996) Phys. Rev. Lett., 77, p. 219. , [hep-ph/9603378][SPIRES]
  • Khlebnikov, S.Y., Tkachev, I.I., (1997) Relic Gravitational Waves Produced after Preheating, Phys. Rev., 56, p. 653. , [hep-ph/9701423][SPIRES]
  • Kofman, L., Linde, A.D., Starobinsky, A.A., (1996) Non-thermal Phase Transitions after Inflation, Phys. Rev. Lett., 76, p. 1011. , [hep-th/9510119][SPIRES]
  • Kofman, L., Linde, A.D., Starobinsky, A.A., Towards the theory of reheating after inflation (1997) Phys. Rev., D 56, p. 3258. , [hep-ph/9704452] [SPIRES]
  • Finelli, F., Brandenberger, R.H., Parametric amplification of gravitational fluctuations during reheating (1999) Phys. Rev. Lett., 82, p. 1362. , [hep-ph/9809490] [SPIRES]
  • Finelli, F., Brandenberger, R.H., Parametric amplification of metric fluctuations during reheating in two field models (2000) Phys. Rev., D 62, p. 083502. , [hep-ph/0003172] [SPIRES]
  • Felder, G.N., Tkachev, I., LATTICEEASY: A program for lattice simulations of scalar fields in an expanding universe (2008) Comput. Phys. Commun., 178. , [hep-ph/0011159] [SPIRES]
  • Felder, G.N., Dynamics of symmetry breaking and tachyonic preheating (2001) Phys. Rev. Lett., 87, p. 011601. , [hep-ph/0012142] [SPIRES]
  • Felder, G.N., Kofman, L., The development of equilibrium after preheating (2001) Phys. Rev., D 63, p. 103503. , [hep-ph/0011160] [SPIRES]
  • Grana, M., Calzetta, E., Reheating and turbulence (2002) Phys. Rev., D 65, p. 063522. , [hep-ph/0110244] [SPIRES]
  • Jedamzik, K., Lemoine, M., Martin, J., Generation of gravitational waves during early structure formation between cosmic inflation and reheating (2010) JCAP, 4, p. 021. , [arXiv:1002.3278] [SPIRES]
  • Finelli, F., Gruppuso, A., Resonant amplification of gauge fields in expanding universe (2001) Phys. Lett, B 502, p. 216. , [hep-ph/0001231] [SPIRES]
  • Bassett, B.A., Pollifrone, G., Tsujikawa, S., Viniegra, F., Preheating as cosmic magnetic dynamo (2001) Phys. Rev., D 63, p. 103515. , [astro-ph/0010628] [SPIRES]
  • Moffatt, H.K., (1983) Magnetic Field Generation in Electrically Conducting Fluids, , Cambridge University Press, Cambridge U.K. 1st paperback edition
  • Mininni, P.D., Gomez, D.O., Mahajan, S.M., Dynamo action in magnetohydrodynamics and hall-magnetohydrodynamics (2003) Astrophys. J., 587, p. 472
  • Mininni, P., Highly turbulent solutions of the Lagrangian-averaged Navier-Stokes a model and their large-eddy-simulation potential (2007) Phys. Rev., E 76, p. 026316
  • Birrel, N.D., Davies, P.C.W., (1994) Quantum Fields in Curved Space, , Cambridge University Press, Cambridge U.K
  • Mukhanov, V., Winitzki, S., (2007) Introduction to Quantum Effects in Gravity, , Cambridge University Press, Cambridge U.K
  • Parker, L., Toms, D., (2009) Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity, , Cambridge University Press, Cambridge U.K
  • Lesieur, M., (1990) Turbulence in Fluids, , Kluwer Academic Pub., Dordrecht The Netherlands
  • Brandenburg, A., Bigazzi, A., Subramanian, K., The helicity constraint in turbulent dynamos with shear (2001) Mon. Not. Roy. Astron. Soc., 325, p. 685. , [astro-ph/0011081] [SPIRES]
  • Mininni, P.D., Gomez, D.O., Mahajan, S.M., Direct simulations of helical Hall-MHD turbulence and dynamo action (2005) Astrophys. J., 619, p. 1019. , [astro-ph/0410274] [SPIRES]
  • Allen, B., Vacuum states in de Sitter space (1985) Phys. Rev., D 32, p. 3136. , [SPIRES]
  • Kovtun, P., Son, D.T., Starinets, A.O., Viscosity in strongly interacting quantum, field theories from black hole physics (2005) Phys. Rev. Lett., 94, p. 111601. , [hep-th/0405231] [SPIRES]
  • Luzum, M., Romatschke, P., Viscous hydrodynamic predictions for nuclear collisions at the LHC (2009) Phys. Rev. Lett., 103, p. 262302. , [arXiv:0901.4588] [SPIRES]
  • Raedler, K.-H., Rheinhardt, M., Mean-field Electrodynamics: Critical Analysis of Various Analytical Approaches, , astro-ph/0606267 [SPIRES]
  • McComb, W.D., (1990) The Physics of Fluid Turbulence, , Oxford University Press, Oxford U.K
  • Kolb, E.W., Turner, M.S., (1990) The Early Universe, , Addison-Wesley, Reading U.S.A
  • Starobinsky, A.A., A new type of isotropic cosmological models without singularity (1980) Phys. Lett., B 91, p. 99. , [SPIRES]
  • Zaballa, I., Sasaki, M., Boosted Perturbations at the End of Inflation, , arXiv:0911.2069 [SPIRES]
  • Monin, A.S., Yaglom, A.M., (2007) Statistical Fluid Mechanics: Mechanics of Turbulence., 2. , Dover eds., New York U.S.A
  • Tomita, K., Nariai, H., Satö, H., Matsuda, T., Takeda, H., On the dissipation of primordial turbulence in the expanding universe (1970) Prog. Theor. Phys., 43, p. 1511
  • Itzykson, C., Zuber, J.B., (2005) Quantum Field Theory, , Dover eds., New York U.S.A

Citas:

---------- APA ----------
Calzetta, E. & Kandus, A. (2010) . Primordial magnetic field amplification from turbulent reheating. Journal of Cosmology and Astroparticle Physics, 2010(8).
http://dx.doi.org/10.1088/1475-7516/2010/08/007
---------- CHICAGO ----------
Calzetta, E., Kandus, A. "Primordial magnetic field amplification from turbulent reheating" . Journal of Cosmology and Astroparticle Physics 2010, no. 8 (2010).
http://dx.doi.org/10.1088/1475-7516/2010/08/007
---------- MLA ----------
Calzetta, E., Kandus, A. "Primordial magnetic field amplification from turbulent reheating" . Journal of Cosmology and Astroparticle Physics, vol. 2010, no. 8, 2010.
http://dx.doi.org/10.1088/1475-7516/2010/08/007
---------- VANCOUVER ----------
Calzetta, E., Kandus, A. Primordial magnetic field amplification from turbulent reheating. J. Cosmol. Astroparticle Phys. 2010;2010(8).
http://dx.doi.org/10.1088/1475-7516/2010/08/007