Artículo

Ipiña, E.P.; Dawson, S.P."The effect of reactions on the formation and readout of the gradient of Bicoid" (2017) Physical Biology. 14(1)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

During early development, the establishment of gradients of transcriptional factors determines the patterning of cell fates. The case of Bicoid (Bcd) in Drosophila melanogaster embryos is well documented and studied. There are still controversies as to whether SDD models in which Bcd is Synthesized at one end, then Diffuses and is Degraded can explain the gradient formation within the timescale observed experimentally. The Bcd gradient is observed in embryos that express a Bicoid-eGFP fusion protein (Bcd-GFP) which cannot differentiate if Bcd is freely diffusing or bound to immobile sites. In this work we analyze an SDID model that includes the Interaction of Bcd with binding sites. We simulate numerically the resulting full reaction-diffusion system in a cylindrical domain using previously determined biophysical parameters and a simplified version of the Bcd source. In this way we obtain solutions that depend on the spatial location approximately as observed experimentally and that reach such dependence at a time that is also compatible with the experimental observations. Analyzing the differences between the free and bound Bcd distributions we observe that the latter spans over a longer lengthscale. We conclude that deriving the lengthscale from the distribution of Bcd-GFP can lead to an overestimation of the gradient lengthscale and of the Hill coefficient that relates the concentrations of Bcd and of the protein, Hunchback, whose production is regulated by Bcd. © 2017 IOP Publishing Ltd.

Registro:

Documento: Artículo
Título:The effect of reactions on the formation and readout of the gradient of Bicoid
Autor:Ipiña, E.P.; Dawson, S.P.
Filiación:Departamento de Física, FCEN-UBA, IFIBA, CONICET, Ciudad Universitaria, Pabellón I, Buenos Aires, 1428, Argentina
Laboratoire J. A. Dieudonné, Université de Nice Sophia Antipolis, UMR 7351 CNRS, Parc Valrose, Nice Cedex 02, F-06108, France
Palabras clave:Bicoid; fluorescence; mathematical modeling; reactions; SDD model; bicoid protein, Drosophila; homeodomain protein; transactivator protein; animal; biological model; computer simulation; diffusion; Drosophila melanogaster; embryology; metabolism; Animals; Computer Simulation; Diffusion; Drosophila melanogaster; Homeodomain Proteins; Models, Biological; Trans-Activators
Año:2017
Volumen:14
Número:1
DOI: http://dx.doi.org/10.1088/1478-3975/aa56d9
Handle:http://hdl.handle.net/20.500.12110/paper_14783967_v14_n1_p_Ipina
Título revista:Physical Biology
Título revista abreviado:Phys. Biol.
ISSN:14783967
CAS:bicoid protein, Drosophila; Homeodomain Proteins; Trans-Activators
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14783967_v14_n1_p_Ipina

Referencias:

  • Abu-Arish, A., Porcher, A., Czerwonka, A., Dostatni, N., Fradin, C., High mobility of bicoid captured by fluorescence correlation spectroscopy: Implication for the rapid establishment of its gradient (2010) Biophys. J., 99, pp. L33-L35
  • Bergmann, S., Sandler, O., Sberro, H., Shnider, S., Schejter, E., Shilo, B.Z., Barkai, N., Pre-steady-state decoding of the bicoid morphogen gradient (2007) PLoS Biol., 5, p. e46
  • Boon, J.P., Lutsko, J.F., Lutsko, C., Microscopic approach to nonlinear reaction-diffusion: The case of morphogen gradient formation (2012) Phys. Rev., 85
  • Crick, F., Diffusion in Etibryogenesis (1970) Nature, 225, p. 421
  • Douglas, J., Rachford, H.H., On the numerical solution of heat conduction problems in two and three space variables (1956) Trans. Am. Math. Soc., 82, pp. 421-439
  • Driever, W., Nusslein-Volhard, C., The bicoid protein is a positive regulator of hunchback transcription in the early drosophila embryo (1989) Nature, 337, pp. 138-143
  • Driever, W., Nusslein-Volhard, C., Stability and nuclear dynamics of the bicoid morphogen gradient (1988) Cell, 54, pp. 83-93
  • Drocco, J.A., Grimm, O., Tank, D.W., Wieschaus, E., Measurement and perturbation of morphogen lifetime: Effects on gradient shape (2011) Biophys. J., 101, pp. 1807-1815
  • Dubuis, J.O., Tkačik, G., Wieschaus, E.F., Gregor, T., Bialek, W., Positional information, in bits (2013) Proc. Natl Acad. Sci., 110, pp. 16301-16308
  • Elf, J., Li, G.W., Xie, X.S., Probing transcription factor dynamics at the single-molecule level in a living cell (2007) Science, 316, pp. 1191-1194
  • Estrada, J., Wong, F., DePace, A., Gunawardena, J., Information integration and energy expenditure in gene regulation (2016) Cell, 166, pp. 234-244
  • Gregor, T., Tank, D.W., Wieschaus, E.F., Bialek, W., Probing the limits to positional information (2007) Cell, 130, pp. 153-164. , 2007a
  • Gregor, T., Wieschaus, E.F., McGregor, A.P., Bialek, W., Tank, D.W., Stability and nuclear dynamics of the bicoid morphogen gradient (2007) Cell, 130, pp. 141-152. , 2007b
  • Grimm, O., Coppey, M., Wieschaus, E., Modelling the bicoid gradient (2010) Development, 137, pp. 2253-2264
  • Guruharsha, K., A protein complex network of drosophila melanogaster (2011) Cell, 147, pp. 690-703
  • Hammar, P., Leroy, P., Mahmutovic, A., Marklund, E.G., Berg, O.G., Elf, J., The lac repressor displays facilitated diffusion in living cells (2012) Science, 336, pp. 1595-1598
  • Hecht, I., Rappel, W.J., Levine, H., Determining the scale of the bicoid morphogen gradient (2009) Proc. Natl Acad. Sci., 106, pp. 1710-1715
  • Hornung, G., Berkowitz, B., Barkai, N., Morphogen gradient formation in a complex environment: An anomalous diffusion model (2005) Phys. Rev., 72
  • Houchmandzadeh, B., Wieschaus, E., Leibler, S., Establishment of developmental precision and proportions in the early Drosophila embryo (2002) Nature, 415, pp. 798-802
  • Iizuka, R., Yamagishi-Shirasaki, M., Funatsu, T., Kinetic study of de novo chromophore maturation of fluorescent proteins (2011) Anal. Biochem., 414, pp. 173-178
  • Ipiña, E.P., Dawson, S.P., Fluctuations, correlations and the estimation of concentrations inside cells (2016) PLoS One, 11, p. e0151132
  • Lecker, S.H., Goldberg, A.L., Mitch, W.E., Protein degradation by the ubiquitin - Proteasome pathway in normal and disease states (2006) J. Am. Soc. Nephrol., 17, pp. 1807-1819
  • Little, S.C., Tikhonov, M., Gregor, T., Precise developmental gene expression arises from globally stochastic transcriptional activity (2013) Cell, 154, pp. 789-800
  • Little, S.C., Tkačik, G., Kneeland, T.B., Wieschaus, E.F., Gregor, T., The formation of the bicoid morphogen gradient requires protein movement from anteriorly localized mRNA (2011) PLoS Biol., 9, p. e1000596
  • Liu, F., Morrison, A.H., Gregor, T., Dynamic interpretation of maternal inputs by the drosophila segmentation gene network (2013) Proc. Natl Acad. Sci., 110, pp. 6724-6729
  • Liu, J., Ma, J., Fates-shifted is an F-box protein that targets Bicoid for degradation and regulates developmental fate determination in Drosophila embryos (1996) Nat. Cell Biol., 13, pp. 22-29
  • Milo, R., Phillips, R., (2015) Cell Biology by the Numbers, , (New York: Garland Science)
  • Pando, B., Dawson, S.P., Mak, D.O.D., Pearson, J.E., Messages diffuse faster than messengers (2006) Proc. Natl Acad. Sci. USA, 103, pp. 5338-5342
  • Porcher, A., Abu-Arish, A., Huart, S., Roelens, B., Fradin, C., Dostatni, N., The time to measure positional information: Maternal hunchback is required for the synchrony of the bicoid transcriptional response at the onset of zygotic transcription (2010) Development, 137, pp. 2795-2804
  • Rivera-Pomar, R., Niessing, D., Schmidt-Ott, U., Gehring, W.J., Jackle, H., RNA binding and translational suppression by bicoid (1996) Nature, 379, pp. 746-749
  • Sigaut, L., Pearson, J.E., Colman-Lerner, A., Dawson, S.P., Messages do diffuse faster than messengers: Reconciling disparate estimates of the morphogen bicoid diffusion coefficient (2014) PLoS Comput. Biol., 10, p. e1003629
  • Sigaut, L., Ponce, M.L., Colman-Lerner, A., Dawson, S.P., Optical techniques provide information on various effective diffusion coefficients in the presence of traps (2010) Phys. Rev., 82
  • Sigaut, L., Villarruel, C., Ponce, M.L., Dawson, S.P., (2016) Sets of FCS Experiments to Quantify Free Diffusion Coefficients in Reaction-diffusion Systems. the Case of Ca2+ and Its Dyes, , Sets of FCS experiments to quantify free diffusion coefficients in reaction-diffusion systems. The case of Ca2+thinsp;thinsp;and its dyes (arXiv:1609.04007)
  • Sniegowski, J.A., Phail, M.E., Wachter, R.M., Maturation efficiency, trypsin sensitivity, and optical properties of arg96, glu222, and gly67 variants of green fluorescent protein (2005) Biochem. Biophys. Res. Commun., 332, pp. 657-663
  • Spirov, A., Fahmy, K., Schneider, M., Frei, E., Noll, M., Baumgartner, S., Formation of the bicoid morphogen gradient: An mRNA gradient dictates the protein gradient (2009) Development, 136, pp. 605-614
  • Sprague, B., McNally, J., Frap analysis of binding: Proper and fitting (2005) Trends Cell Biol., 15, pp. 84-91
  • St Johnston, D., Driever, W., Berleth, T., Richstein, S., Nüsslein-Volhard, C., Multiple steps in the localization of bicoid RNA to the anterior pole of the Drosophila oocyte (1989) Development, 107, pp. 13-19
  • Strier, D.E., Dawson, S.P., Rescaling of diffusion coefficients in two-time scale chemical systems (2000) J. Chem. Phys., 112, pp. 825-834
  • Struhl, G., Struhl, K., Macdonald, P.M., The gradient morphogen bicoid is a concentration-dependent transcriptional activator (1989) Cell, 57, pp. 1259-1273
  • Tkačik, G., Callan, C.G., Bialek, W., Information flow and optimization in transcriptional regulation (2008) Proc. Natl Acad. Sci., 105, pp. 12265-12270
  • Von Hippel, P.H., Berg, O.G., Facilitated target location in biological systems (1989) J. Biol. Chem., 264, pp. 675-678
  • Wagner, J., Keizer, J., Effects of rapid buffers on ca2 + diffusion and ca2 + oscillations (1994) Biophys. J., 67, pp. 447-456. , Effects of rapid buffers on ca2thinsp;thinsp;+thinsp;thinsp;diffusion and ca2thinsp;thinsp;+thinsp;thinsp;oscillations
  • Wolpert, L., Positional information and the spatial pattern of cellular differentiation (1969) J. Theor. Biol., 25, pp. 1-47
  • Yuste, S., Abad, E., Lindenberg, K., Reaction-subdiffusion model of morphogen gradient formation (2010) Phys. Rev., 82
  • Zhu, W., Hanes, S.D., Identification of drosophila bicoid-interacting proteins using a custom two-hybrid selection (2000) Gene, 245, pp. 329-339

Citas:

---------- APA ----------
Ipiña, E.P. & Dawson, S.P. (2017) . The effect of reactions on the formation and readout of the gradient of Bicoid. Physical Biology, 14(1).
http://dx.doi.org/10.1088/1478-3975/aa56d9
---------- CHICAGO ----------
Ipiña, E.P., Dawson, S.P. "The effect of reactions on the formation and readout of the gradient of Bicoid" . Physical Biology 14, no. 1 (2017).
http://dx.doi.org/10.1088/1478-3975/aa56d9
---------- MLA ----------
Ipiña, E.P., Dawson, S.P. "The effect of reactions on the formation and readout of the gradient of Bicoid" . Physical Biology, vol. 14, no. 1, 2017.
http://dx.doi.org/10.1088/1478-3975/aa56d9
---------- VANCOUVER ----------
Ipiña, E.P., Dawson, S.P. The effect of reactions on the formation and readout of the gradient of Bicoid. Phys. Biol. 2017;14(1).
http://dx.doi.org/10.1088/1478-3975/aa56d9