Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Equilibrium and dynamical characteristics pertaining to the solvation of the fluorescent probe coumarin 153 in liquid methanol confined within cylindrical silica pores are investigated using molecular dynamics techniques. Three kinds of pores are examined: (i) Soft hydrophobic cavities, in which wall-solvent interactions were exclusively of the Lennard-Jones type; (ii) Hydrophilic cavities, in which unsaturated oxygen sites at the wall were transformed into hydroxyl groups; (iii) Rugged pores, in which 60% of the polar groups were transformed into bulkier and mobile trimethylsilyl moieties. Equilibrium solvation structures in the three pores differ considerably: In hydrophobic environments, the solute remains adsorbed to the pore wall, with its molecular plane mostly parallel to the interface. Upon hydroxylation, the solid interface becomes preferentially coated by methanol, leading to a bistable solvation state of the probe, with alternation of "wall-like" and "bulk-like" events. An increment in the interface roughness promotes a solvation structure characterized by the embedding of the probe within a wall domain surrounded by trimethylsilyl groups. In hydrophobic environments, the relevant dynamical modes of the probe can be cast in terms of in-the-wall rotations, whereas in hydrophilic pores, out-of-the-wall evolutions are also present. The embedding of the probe at wall domains in more rugged pores, leads to restrained angular motions, with maximum amplitudes of the order of 20°. Results of early stages of the solvation response of the environment following a vertical excitation of the probe are also presented. During the initial 30 ps, we found no evidence of modifications in the spatial localizations of the probe. The overall responses are found to be between 2 and 4.5 times slower than the one observed in the bulk, being the fastest relaxation the one associated to rugged pores whereas the slowest one corresponds to hydrophilic cavities. These features are rationalized in terms of the composition of the first solvation shells and the local dynamical inhomogeneities prevailing within the different regions of the pores. © 2011 American Chemical Society.

Registro:

Documento: Artículo
Título:Liquid methanol confined within functionalized silica nanopores. 2. Solvation dynamics of coumarin 153
Autor:Elola, M.D.; Rodriguez, J.; Laria, D.
Filiación:Departamento de Física, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, 1429 Buenos Aires, Argentina
ECyT, UNSAM, Martín de Irigoyen 3100, 1650 San Martín, Provincia de Buenos Aires, Argentina
Departamento de Qumica Inorgánica Analítica y Química-Física e INQUIMAe, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Palabras clave:Hydrophilicity; Hydrophobicity; Liquids; Methanol; Molecular dynamics; Nanopores; Probes; Silica; Angular motions; Bistables; Bulk-like; Coumarin 153; Dynamical characteristics; Fluorescent probes; Functionalized silica; Hydrophilic pores; Hydrophobic cavities; Hydrophobic environment; Hydroxyl groups; Inhomogeneities; Interface roughness; Lennard-Jones type; Liquid methanol; Maximum amplitude; Molecular dynamics techniques; Molecular planes; Oxygen site; Polar groups; Pore wall; Silica pores; Solid interfaces; Solvation dynamics; Solvation response; Solvation shell; Solvation state; Solvation structure; Spatial localization; Trimethylsilyl; Trimethylsilyl groups; Vertical excitation; Solvation
Año:2011
Volumen:115
Número:44
Página de inicio:12859
Página de fin:12867
DOI: http://dx.doi.org/10.1021/jp205832y
Título revista:Journal of Physical Chemistry B
Título revista abreviado:J Phys Chem B
ISSN:15206106
CODEN:JPCBF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v115_n44_p12859_Elola

Referencias:

  • Jinesh, K.B., Frenken, J.W.M., (2008) Phys. Rev. Lett., 101, p. 036101
  • Angell, C.A., (2008) Science, 319, p. 582
  • Rasaiah, J.C., Garde, S., Hummer, G., (2008) Annu. Rev. Phys. Chem., 59, p. 713
  • Jarzeba, W., Walker, G.C., Johnson, A.E., Barbara, P.F., (1991) Chem. Phys., 152, p. 57
  • Horng, M.L., Gardecki, J.A., Papazyan, A., Maroncelli, M., (1995) J. Phys. Chem., 99, p. 17311
  • Horng, M.L., Gardecki, J.A., Maroncelli, M., (1997) J. Phys. Chem. A, 101, p. 1030
  • Chakrabarty, D., Chakraborty, A., Seth, D., Hazra, P., Sarkar, N., (2005) Chem. Phys. Lett., 412, p. 255
  • Kometani, N., Hoshihara, Y., Yonezawa, Y., Kajimoto, O., Hara, K., Ito, N., (2004) J. Phys. Chem. A, 108, p. 9479
  • Chakrabarty, D., Chakraborty, A., Seth, D., Hazra, P., Sarkar, N., (2004) Chem. Phys. Lett., 397, p. 469
  • Jin, H., Baker, G.A., Arzhantsev, S., Dong, J., Maroncelli, M., (2007) J. Phys. Chem. B, 111, p. 7291
  • Hazra, P., Chakrabarty, D., Chakraborty, A., Sarkar, N., (2004) Biochem. Biophys. Res. Commun., 314, p. 543
  • Baumann, R., Ferrante, C., Kneuper, E., Deeg, F.-W., Bräuchle, C., (2003) J. Phys. Chem. A, 107, p. 2422
  • Kamijo, T., Yamaguchi, A., Suzuki, S., Teramae, N., Itoh, T., Ikeda, T., (2008) J. Phys. Chem. A, 112, p. 11535
  • Elola, M.D., Rodriguez, J., Laria, D., (2010) J. Chem. Phys., 133, p. 154707
  • Maroncelli, M., (1993) J. Mol. Liq., 57, p. 1
  • Rosenthal, S.J., Jimenez, R., Fleming, G.R., Kumar, P.V., Maroncelli, M., (1994) J. Mol. Liq., 60, p. 25
  • Kumar, P.V., Maroncelli, M., (1995) J. Chem. Phys., 103, p. 3038
  • Bagchi, B., (1989) Annu. Rev. Phys. Chem., 40, p. 115
  • Hynes, J.T., (1994) Ultrafast Dynamics of Chemical Systems, , Simon, J. D. Kluwer: Dordrecht, Netherlands
  • Thompson, W.H., (2002) J. Chem. Phys., 117, p. 6618
  • Thompson, W.H., (2004) J. Chem. Phys., 120, p. 8125
  • Feng, X., Thompson, W.H., (2007) J. Phys. Chem. C, 111, p. 18060
  • Morales, C.M., Thompson, W.H., (2009) J. Phys. Chem. A, 113, p. 1922
  • Feng, X., Thompson, W.H., (2010) J. Phys. Chem. C, 114, p. 4279
  • Faeder, J., Ladanyi, B.M., (2001) J. Phys. Chem. B, 105, p. 11148
  • Rodriguez, J., Mart, J., Guàrdia, E., Laria, D., (2008) J. Phys. Chem. B, 112, p. 8990
  • Gulmen, T.S., Thompson, W.H., (2006) Dynamics in Small Confining Systems VIII, , Fourkas, J. T. Levitz, P. Overney, R. Urbakh, M. Materials Research Society Symposium Proceedings: Warrendale, PA, Vol. 899E
  • Rodriguez, J., Elola, M.D., Laria, D., (2010) J. Phys. Chem. B, 114, p. 7900
  • MacKerell, J.A.D., Banavali, N., Foloppe, N., (2001) Biopolymers, 56, p. 257
  • Martins, L.R., Skaf, M.S., (2003) Chem. Phys. Lett., 370, p. 683
  • Moylan, C.R., (1994) J. Phys. Chem., 98, p. 13513
  • Baumann, W., Nagy, Z., (1993) Pure Appl. Chem., 65, p. 1729
  • Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Schulten, K., (2005) J. Comput. Chem., 26, p. 1781
  • Barbara, P.F., Jarzeba, W., (1990) Adv. Photochem., 15, p. 1
  • Castner Jr., E.W., Maroncelli, M., (1998) J. Mol. Liq., 77, p. 1
  • Maroncelli, M., (1991) J. Chem. Phys., 94, p. 2084
  • Maroncelli, M., Fleming, G.R., (1988) J. Chem. Phys., 89, p. 5044
  • Carter, E.A., Hynes, J.T., (1991) J. Chem. Phys., 94, p. 5961
  • Fonseca, T., Ladanyi, B.M., (1994) J. Mol. Liq., 60, p. 1
  • Furse, K.E., Corcelli, S.A., (2008) J. Am. Chem. Soc., 130, p. 13103
  • Baumann, R., Ferrante, C., Deeg, F.W., Bräuchle, C., (2001) J. Chem. Phys., 114, p. 5781
  • Pantano, D., Laria, D., (2003) J. Phys. Chem. B, 107, p. 2971

Citas:

---------- APA ----------
Elola, M.D., Rodriguez, J. & Laria, D. (2011) . Liquid methanol confined within functionalized silica nanopores. 2. Solvation dynamics of coumarin 153. Journal of Physical Chemistry B, 115(44), 12859-12867.
http://dx.doi.org/10.1021/jp205832y
---------- CHICAGO ----------
Elola, M.D., Rodriguez, J., Laria, D. "Liquid methanol confined within functionalized silica nanopores. 2. Solvation dynamics of coumarin 153" . Journal of Physical Chemistry B 115, no. 44 (2011) : 12859-12867.
http://dx.doi.org/10.1021/jp205832y
---------- MLA ----------
Elola, M.D., Rodriguez, J., Laria, D. "Liquid methanol confined within functionalized silica nanopores. 2. Solvation dynamics of coumarin 153" . Journal of Physical Chemistry B, vol. 115, no. 44, 2011, pp. 12859-12867.
http://dx.doi.org/10.1021/jp205832y
---------- VANCOUVER ----------
Elola, M.D., Rodriguez, J., Laria, D. Liquid methanol confined within functionalized silica nanopores. 2. Solvation dynamics of coumarin 153. J Phys Chem B. 2011;115(44):12859-12867.
http://dx.doi.org/10.1021/jp205832y