Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Microbial fuel cells (MFCs) are bioelectrochemical systems (BES) capable of harvesting electrons from redox reactions involved in metabolism. In a previous work, we used chemoorganoheterotrophic microorganisms from the three domains of life - Bacteria, Archaea, and Eukarya - to demonstrate that these BES could be applied to the in situ detection of extraterrestrial life. Since metabolism can be considered a common signature of life "as we know it," we extended in this study the ability to use MFCs as sensors for photolithoautotrophic metabolisms. To achieve this goal, two different photosynthetic microorganisms were used: the microalgae Parachlorella kessleri and the cyanobacterium Nostoc sp. MFCs were loaded with nonsterilized samples, sterilized samples, or sterilized culture medium of both microorganisms. Electric potential measurements were recorded for each group in single experiments or in continuum during light-dark cycles, and power and current densities were calculated. Our results indicate that the highest power and current density values were achieved when metabolically active microorganisms were present in the anode of the MFC. Moreover, when continuous measurements were performed during light-dark cycles, it was possible to see a positive response to light. Therefore, these BES could be used not only to detect chemoorganoheterotrophic metabolisms but also photolithoautotrophic metabolisms, in particular those involving oxygenic photosynthesis. Additionally, the positive response to light when using these BES could be employed to distinguish photosynthetic from nonphotosynthetic microorganisms in a sample. © Mary Ann Liebert, Inc. 2015.

Registro:

Documento: Artículo
Título:In situ search for extraterrestrial life: A microbial fuel cell-based sensor for the detection of photosynthetic metabolism
Autor:Figueredo, F.; Cortón, E.; Abrevaya, X.C.
Filiación:Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Pabellón 2, Buenos Aires, Argentina
Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), Pabellón IAFE, Ciudad Universitaria, Buenos Aires, Argentina
Palabras clave:Astrobiology; Bioelectrochemical systems; Life detection; Photosynthesis; Redox reactions; culture medium; bioenergy; culture medium; genetic procedures; green alga; photosynthesis; physiology; Bioelectric Energy Sources; Biosensing Techniques; Chlorophyta; Culture Media; Photosynthesis
Año:2015
Volumen:15
Número:9
Página de inicio:717
Página de fin:727
DOI: http://dx.doi.org/10.1089/ast.2015.1288
Título revista:Astrobiology
Título revista abreviado:Astrobiology
ISSN:15311074
CAS:Culture Media
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15311074_v15_n9_p717_Figueredo

Referencias:

  • Abrevaya, X.C., Mauas, P.J.D., Corton, E., Microbial fuel cells applied to the metabolically based detection of extraterrestrial life (2010) Astrobiology, 10, pp. 965-971
  • Abrevaya, X.C., Sacco, N.J., Bonetto, M.C., Hilding-Ohlsson, A., Corton, E., Analytical applications of microbial fuel cells Part I: Biochemical oxygen demand (2015) Biosens Bioelectron, 63, pp. 580-590
  • Abrevaya, X.C., Sacco, N.J., Bonetto, M.C., Hilding-Ohlsson, A., Corton, E., Analytical applications of microbial fuel cells Part II: Toxicity, microbial activity and quantification, single analyte detection and other uses (2015) Biosens Bioelectron, 63, pp. 591-601
  • Atwater, J.E., Dahl, R.W., Garmon, F.C., Lunsford, T.D., Michalek, W.F., Wheeler, R.R., Jr., Sauer, R.L., Miniature microwave powered steam sterilization chamber (1997) Rev Sci Instrum, 68, pp. 3924-3925
  • Biemann, K., On the ability of the Viking gas chromatograph-mass spectrometer to detect organic matter (2007) Proc Natl Acad Sci USA, 104, pp. 10310-10313
  • Bischoff, H.W., Bold, H.C., (1963) Phycological Studies IV Some Soil Algae from Enchanted Rock and Related Algal Species, University of Texas Publication, , No. 6318, the University of Texas, Austin
  • Bishop, J.L., Louris, S.K., Rogoff, D.A., Rothschild, L.J., Nanophase iron oxides as a key ultraviolet sunscreen for ancient photosynthetic microbes (2006) International Journal of Astrobiology, 5, pp. 1-12
  • Conrad, P.G., Nealson, K.H., A non-Earthcentric approach to life detection (2001) Astrobiology, 1, pp. 15-24
  • Dartnell, L.R., Patel, M., Degradation of microbial fluorescence biosignatures by solar ultraviolet radiation on Mars (2014) International Journal of Astrobiology, 13, pp. 112-123
  • De Caprariis, B., De Filippis, P., Di Battista, A., Di Palma, L., Scarsella, M., Exoelectrogenic activity of a green microalgae, Chlorella vulgaris, in a bio-photovoltaic cells (BPVs (2014) Chemical Engineering Transactions, 38, pp. 523-528
  • Des Marais, D.J., Nuth, J.A., III, Allamandola, L.J., Boss, A.P., Farmer, J.D., Hoehler, T.M., Jakosky, B.M., Spormann, A.M., The nasa astrobiology roadmap (2008) Astrobiology, 8, pp. 715-730
  • De Vera, J.P., Dulai, S., Kereszturi, A., Koncz, L., Lorek, A., Mohlmann, D., Marschall, M., Pocs, T., Results on the survival of cryptobiotic cyanobacteria samples after exposure to Mars-like environmental conditions (2014) International Journal of Astrobiology, 13, pp. 35-44
  • Dodds, W.K., Gudder, D.A., Mollenhauer, D., The ecology of Nostoc (1995) J Phycol, 31, pp. 2-18
  • Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D., Dohnalkova, A., Beveridge, T.J., Fredrickson, J.K., Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms (2006) Proc Natl Acad Sci USA, 103, pp. 11358-11363
  • Hoehn, A., Brown, I., Clawson, J., Freeman, J.B., Kapit, J., Lynch, K.L., Young, S.M.M., Kounaves, S.P., (2007) Microbial Detection Array (MDA), A Novel Instrument for Unambiguous Detection of Microbial Metabolic Activity in Astrobiology Applications, , SAE Paper 2007-01-3190, SAE International, Warrendale, PA
  • Houtkooper, J.M., Schulze-Makuch, D., A possible biogenic origin for hydrogen peroxide on Mars: The Viking results reinterpreted (2007) International Journal of Astrobiology, 6, pp. 147-152
  • Juarez, A.B., Velez, C.G., Iniguez, A.R., Martinez, D.E., Rodriguez, M.C., Vigna, M.S., Rios De Molina, M.C., A Parachlorella kessleri (Trebouxiophyceae, Chlorophyta) strain from an extremely acidic geothermal pond in Argentina (2011) Phycologia, 50, pp. 413-421
  • Kiang, N.Y., Siefert, J.G., Blankenship, R.E., Spectral signatures of photosynthesis i Review of Earth organisms (2007) Astrobiology, 7, pp. 222-251
  • Kiang, N.Y., Segura, A., Tinetti, G., Govindjee Blankenship, R.E., Cohen, M.J., Siefert, J., Crisp, D., Meadows, V.S., Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds (2007) Astrobiology, 7, pp. 252-274
  • Klein, H.P., The Viking biological investigation: General aspects (1977) J Geophys Res, 82, pp. 4677-4680
  • Klein, H.P., Did Viking discover life on Mars? (1999) Orig Life Evol Biosph, 29, pp. 625-631
  • Klein, H.P., Horowitz, N.H., Levin, G.V., Oyama, V.I., Lederberg, J., Rich, A., Hubbard, J.S., Johnson, R.D., The Viking biological investigation: Preliminary results (1976) Science, 194, pp. 99-105
  • Kodadek, T., Protein microarrays: Prospects and problems (2001) Chem Biol, 8, pp. 105-115
  • Kounaves, S.P., Noll, R.A., Buehler, M.G., Hecht, M.H., Lankford, K., West, S.J., Microbial life detection with minimal assumptions (2002) Proc SPIE, 4495, pp. 137-144
  • Levin, G.V., The curiousness of Curiosity (2014) Astrobiology, 14, pp. 1-3
  • Maly, J., Krejci, J., Ilie, M., Jakubka, L., Masojidek, J., Pilloton, R., Sameh, K., Sugiura, M., Monolayers of photosystem II on gold electrodes with enhanced sensor response-effect of porosity and protein layer arrangement (2005) Anal Bioanal Chem, 381, pp. 1558-1567
  • Marschall, M., Dulai, S., Kereszturi, A., Migrating and UV screening subsurface zone on Mars as target for the analysis of photosynthetic life and astrobiology (2012) Planet Space Sci, 71, pp. 146-153
  • McCollom, T.M., The habitability of Mars: Past and present (2006) Solar System Update, Edited by P. Blondel and J.W. Mason, pp. 159-175. , Springer Praxis Books, Berlin/Chichester
  • Navarro-Gonzalez, R., Navarro, K.F., De La Rosa, J., Iniguez, E., Molina, P., Miranda, L.D., Morales, P., McKay, C.P., The limitations on organic detection in Mars-like soils by thermal volatilization-gas chromatography-MS and their implications for the Viking results (2006) Proc Natl Acad Sci USA, 103, pp. 16089-16094
  • Nealson, K.H., Popa, R., Metabolic diversity in the microbial world: Relevance to exobiology (2005) Micro-Organisms and Earth Systems, Advances in Geomicrobiology, pp. 151-171. , edited by G.M. Gadd, K.T. Temple, and H.M. Lapin-Scott, Cambridge University Press, Cambridge, UK
  • Nealson, K.H., Tsapin, A., Storrie-Lombardi, M., Searching for life in the Universe: Unconventional methods for an unconventional problem (2002) Int Microbiol, 5, pp. 223-230
  • Parro, V., De Diego-Castilla, G., Rodriguez-Manfredi, J.A., Rivas, L.A., Blanco-Lopez, Y., Sebastian, E., Romeral, J., Gomez-Elvira, J., SOLID3: A multiplex antibody microarray-based optical sensor instrument for in situ life detection in planetary exploration (2011) Astrobiology, 11, pp. 15-28
  • Pisciotta, J.M., Zou, Y., Baskakov, I.V., Lightdependent electrogenic activity of cyanobacteria (2010) PLoS One, 5. , doi:10.1371/journal.pone.0010821
  • Pisciotta, J.M., Zou, Y., Baskakov, I.V., Role of the photosynthetic electron transfer chain in electrogenic activity of cyanobacteria (2011) Appl Microbiol Biotechnol, 91, pp. 377-385
  • Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M., Stanier, R.Y., Generic assignments, strain histories and properties of pure cultures of cyanobacteria (1979) J Gen Microbiol, 111, pp. 1-61
  • Rothschild, L.J., Giver, L.J., Photosynthesis below the surface in a cryptic microbial mat (2002) International Journal of Astrobiology, 1, pp. 295-304
  • Schroder, U., Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency (2007) Phys Chem Chem Phys, 9, pp. 2619-2629
  • Sims, M.R., Pillinger, C.T., Wright, I.P., Dowson, J., Whitehead, S., Wells, A., Spragg, J.E., Ng, T.C., Beagle 2: A proposed exobiology lander for esa's 2003 mars express mission (1999) Adv Space Res, 23, pp. 1925-1928
  • Sims, M.R., Cullen, D.C., Bannister, N.P., Grant, W.D., Henry, O., Jones, R., McKnight, D., Wilson, P.K., The Specific Molecular Identification of Life Experiment (SMILE (2005) Planet Space Sci, 53, pp. 781-791
  • Teresaki, N., Yamamoto, N., Tamada, K., Hattori, M., Hiraga, T., Tohri, A., Sato, I., Fujii, M., Bio-photosensor: Cyanobacterial photosystem i coupled with transistor via molecular wire (2007) Biochim Biophys Acta, 1767, pp. 653-659
  • Von Bertalanffy, L., The theory of open systems in physics and biology (1950) Science, 111, pp. 23-29
  • Warren-Rhodes, K.A., Rhones, K.L., Liu, S., Zhou, P., McKay, C.P., Nanoclimate environment of cyanobacterial communities in China's hot and cold hyperarid deserts (2007) J Geophys Res: Biogeosciences, 112. , doi:10.1029/2006JG000260
  • Yagishita, T., Horigome, T., Tanaka, K., Effects of light, CO2 and inhibitors on the current output of biofuel cells containing the photosynthetic organism Synechococcus sp (1993) J Chem Technol Biotechnol, 56, pp. 393-399
  • Young, R.S., The origin and evolution of the Viking mission to Mars (1976) Orig Life, 7, pp. 271-272
  • Zou, Y., Pisciotta, J., Billmyre, R.B., Baskakov, I.V., Photosynthetic microbial fuel cells with positive light response (2009) Biotechnol Bioeng, 104, pp. 939-946

Citas:

---------- APA ----------
Figueredo, F., Cortón, E. & Abrevaya, X.C. (2015) . In situ search for extraterrestrial life: A microbial fuel cell-based sensor for the detection of photosynthetic metabolism. Astrobiology, 15(9), 717-727.
http://dx.doi.org/10.1089/ast.2015.1288
---------- CHICAGO ----------
Figueredo, F., Cortón, E., Abrevaya, X.C. "In situ search for extraterrestrial life: A microbial fuel cell-based sensor for the detection of photosynthetic metabolism" . Astrobiology 15, no. 9 (2015) : 717-727.
http://dx.doi.org/10.1089/ast.2015.1288
---------- MLA ----------
Figueredo, F., Cortón, E., Abrevaya, X.C. "In situ search for extraterrestrial life: A microbial fuel cell-based sensor for the detection of photosynthetic metabolism" . Astrobiology, vol. 15, no. 9, 2015, pp. 717-727.
http://dx.doi.org/10.1089/ast.2015.1288
---------- VANCOUVER ----------
Figueredo, F., Cortón, E., Abrevaya, X.C. In situ search for extraterrestrial life: A microbial fuel cell-based sensor for the detection of photosynthetic metabolism. Astrobiology. 2015;15(9):717-727.
http://dx.doi.org/10.1089/ast.2015.1288