Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We introduce a numerical method to integrate the stochastic Landau-Lifshitz-Gilbert equation in spherical coordinates for generic discretization schemes. This method conserves the magnetization modulus and ensures the approach to equilibrium under the expected conditions. We test the algorithm on a benchmark problem: the dynamics of a uniformly magnetized ellipsoid. We investigate the influence of various parameters, and in particular, we analyze the efficiency of the numerical integration, in terms of the number of steps needed to reach a chosen long time with a given accuracy. © 2014 American Physical Society.

Registro:

Documento: Artículo
Título:Numerical integration of the stochastic Landau-Lifshitz-Gilbert equation in generic time-discretization schemes
Autor:Romá, F.; Cugliandolo, L.F.; Lozano, G.S.
Filiación:Departamento de Física, Universidad Nacional de San Luis, INFAP CONICET, Chacabuco 917, D5700BWS San Luis, Argentina
Sorbonnes Universités, Université Pierre et Marie Curie - Paris 6, UMR 7589, 4 Place Jussieu, Tour 13, 5ème étage, 75252 Paris Cedex 05, France
Departamento de Física, FCEYN Universidad de Buenos Aires, IFIBA CONICET, Pabellón 1 Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:Condensed matter physics; Physics; Approach to equilibrium; Bench-mark problems; Discretization scheme; Landau-Lifshitz-Gilbert equations; Numerical integrations; Spherical coordinates; Time-discretization; Stochastic systems; cobalt; metal nanoparticle; algorithm; electromagnetic field; statistics; temperature; Algorithms; Cobalt; Electromagnetic Phenomena; Metal Nanoparticles; Stochastic Processes; Temperature
Año:2014
Volumen:90
Número:2
DOI: http://dx.doi.org/10.1103/PhysRevE.90.023203
Título revista:Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
Título revista abreviado:Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
ISSN:15393755
CODEN:PLEEE
CAS:cobalt, 7440-48-4; Cobalt
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15393755_v90_n2_p_Roma

Referencias:

  • Hillebrands, B., Ounadjela, K., (2002) Spin Dynamics in Confined Magnetic Structures, , (Springer, Berlin)
  • Bertotti, G., Mayergoyz, I., Serpico, C., (2009) Nonlinear Magnetization Dynamics in Nanosystems, , (Elsevier, Amsterdam)
  • Brown, W.F., (1963) Phys. Rev., 130, p. 1677. , PHRVAO 0031-899X 10.1103/PhysRev.130.1677
  • Slonczewski, J.C., (1996) J. Magn. Magn. Mater., 159, pp. L1. , JMMMDC 0304-8853 10.1016/0304-8853(96)00062-5
  • Berger, L., (1996) Phys. Rev. B, 54, p. 9353. , PRBMDO 0163-1829 10.1103/PhysRevB.54.9353
  • Coffey, W.T., Kalmykov, Y.P., (2012) J. Appl. Phys., 112, p. 121301. , JAPIAU 0021-8979 10.1063/1.4754272
  • Aron, C., Barci, D.G., Cugliandolo, L.F., González Arenas, Z., Lozano, G.S., J. Stat. Mech.: Theor. Exp., , (to be published)], arXiv:1402.1200
  • García-Palacios, J.L., Lázaro, F.J., (1998) Phys. Rev. B, 58, p. 14937. , PRBMDO 0163-1829 10.1103/PhysRevB.58.14937
  • Nowak, U., Chantrell, R.W., Kennedy, E.C., (2000) Phys. Rev. Lett., 84, p. 163. , PRLTAO 0031-9007 10.1103/PhysRevLett.84.163
  • Li, Z., Zhang, S., (2004) Phys. Rev. B, 69, p. 134416. , PRBMDO 1098-0121 10.1103/PhysRevB.69.134416
  • Cheng, X.Z., Jalil, M.B.A., Lee, H.K., Okabe, Y., Time-quantifiable Monte Carlo method for simulating a magnetization- reversal process (2005) Physical Review B - Condensed Matter and Materials Physics, 72 (9), pp. 1-8. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRB:72, DOI 10.1103/PhysRevB.72.094420, 094420
  • Cheng, X.Z., Jalil, M.B.A., Lee, H.K., Okabe, Y., Mapping the Monte Carlo scheme to langevin dynamics: A fokker-planck approach (2006) Physical Review Letters, 96 (6), p. 067208. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.96.067208&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.96.067208
  • D'Aquino, M., Serpico, C., Coppola, G., Mayergoyz, I.D., Bertotti, G., (2006) J. Appl. Phys., 99, pp. 08B905
  • Usadel, K.D., Temperature-dependent dynamical behavior of nanoparticles as probed by ferromagnetic resonance using Landau-Lifshitz-Gilbert dynamics in a classical spin model (2006) Physical Review B - Condensed Matter and Materials Physics, 73 (21), p. 212405. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevB.73.212405&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevB.73.212405
  • Kazantseva, N., Hinzke, D., Nowak, U., Chantrell, R.W., Atxitia, U., Chubykalo-Fesenko, O., (2008) Phys. Rev. B, 77, p. 184428. , PRBMDO 1098-0121 10.1103/PhysRevB.77.184428
  • Titov, S.V., Déjardin, P.M., El Mrabti, H., Kalmykov, Y.P., (2010) Phys. Rev. B, 82, p. 100413. , PRBMDO 1098-0121 10.1103/PhysRevB.82.100413
  • Weiler, M., Dreher, L., Heeg, C., Huebl, H., Gross, R., Brandt, M.S., Goennenwein, S.T.B., (2011) Phys. Rev. Lett., 106, p. 117601. , PRLTAO 0031-9007 10.1103/PhysRevLett.106.117601
  • Haase, C., Nowak, U., (2012) Phys. Rev. B, 85, p. 045435. , PRBMDO 1098-0121 10.1103/PhysRevB.85.045435
  • Martínez, E., López-Díaz, L., Torres, L., Alejos, O., (2004) Physica B, 343, p. 252. , PHYBE3 0921-4526 10.1016/j.physb.2003.08.103
  • Cimrák, I., (2007) Arch. Comput. Meth. Eng., 15, p. 1. , 1134-3060 10.1007/BF03024947
  • Landau, L.D., Lifshitz, E.M., (1935) Phys. Z. Sowjetunion, 8, p. 153
  • Gilbert, T.L., (1955) Phys. Rev., 100, p. 1243
  • Gilbert, T.L., (2004) IEEE Trans. Mag., 40, p. 3443. , 10.1109/TMAG.2004.836740
  • García-Palacios, J.L., (2000) Adv. Chem. Phys., 112, p. 1
  • Cullity, B.D., Graham, C.D., (2009) Introduction to Magnetic Materials, , (Wiley, Hoboken, NJ)
  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., (1992) Numerical Recipes in C: The Art of Scientific Computing, , 2nd ed. (Cambridge University Press, New York)
  • Kubo, R., Toda, M., Hashitume, N., (1992) Statistical Physics II. Nonequilibrium Statistical Mechanics, , (Springer-Verlag, Berlin)
  • Garanin, D.A., (1996) Phys. Rev. e, 54, p. 3250. , 1063-651X 10.1103/PhysRevE.54.3250
  • Kalmykov, Y.P., Coffey, W.T., Atxitia, U., Chubykalo-Fesenko, O., Déjardin, P.-M., Chantrell, R.W., (2010) Phys. Rev. B, 82, p. 024412. , PRBMDO 1098-0121 10.1103/PhysRevB.82.024412
  • Coffey, W.T., Crothers, D.S.F., Kalmykov, Y.P., Waldron, J.T., (1995) Phys. Rev. B, 51, p. 15947. , PRBMDO 0163-1829 10.1103/PhysRevB.51.15947
  • Aron, C., Biroli, G., Cugliandolo, L.F., J. Stat. Mech., 2010, pp. P11018. , 10.1088/1742-5468/2010/11/P11018
  • Miyasaki, K., Seki, K., (1998) J. Chem. Phys., 108, p. 7052
  • Atxitia, U., Chubykalo-Fesenko, O., Chantrell, R.W., Nowak, U., Rebei, A., (2009) Phys. Rev. Lett., 102, p. 057203. , PRLTAO 0031-9007 10.1103/PhysRevLett.102.057203

Citas:

---------- APA ----------
Romá, F., Cugliandolo, L.F. & Lozano, G.S. (2014) . Numerical integration of the stochastic Landau-Lifshitz-Gilbert equation in generic time-discretization schemes. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 90(2).
http://dx.doi.org/10.1103/PhysRevE.90.023203
---------- CHICAGO ----------
Romá, F., Cugliandolo, L.F., Lozano, G.S. "Numerical integration of the stochastic Landau-Lifshitz-Gilbert equation in generic time-discretization schemes" . Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 90, no. 2 (2014).
http://dx.doi.org/10.1103/PhysRevE.90.023203
---------- MLA ----------
Romá, F., Cugliandolo, L.F., Lozano, G.S. "Numerical integration of the stochastic Landau-Lifshitz-Gilbert equation in generic time-discretization schemes" . Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 90, no. 2, 2014.
http://dx.doi.org/10.1103/PhysRevE.90.023203
---------- VANCOUVER ----------
Romá, F., Cugliandolo, L.F., Lozano, G.S. Numerical integration of the stochastic Landau-Lifshitz-Gilbert equation in generic time-discretization schemes. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2014;90(2).
http://dx.doi.org/10.1103/PhysRevE.90.023203