Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Previous studies have linked the C-terminal domain (CTD) of RNA polymerase II (pol II) with cotranscriptional precursor messenger RNA processing, but little is known about the CTD's function in regulating alternative splicing. We have examined this function using α-amanitin-resistant pol II CTD mutants and fibronectin reporter minigenes. We found that the CTD is required for the inhibitory action of the serine/arginine-rich (SR) protein SRp20 on the inclusion of a fibronectin cassette exon in the mature mRNA. CTD phosphorylation controls transcription elongation, which is a major contributor to alternative splicing regulation. However, the effect of SRp20 is still observed when transcription elongation is reduced. These results suggest that the CTD promotes exon skipping by recruiting SRp20 and that this contributes independently of elongation to the transcriptional control of alternative splicing. © 2006 Nature Publishing Group.

Registro:

Documento: Artículo
Título:RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20
Autor:De La Mata, M.; Kornblihtt, A.R.
Filiación:Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Universidad de Buenos Aires, (C1428EHA) Buenos Aires, Argentina
Palabras clave:alpha amanitin; arginine; fibronectin; messenger RNA; protein p20; RNA polymerase II; serine; alternative RNA splicing; article; controlled study; exon; human; human cell; molecular dynamics; phosphorylation; priority journal; protein domain; protein function; regulatory mechanism; terminal sequence; transcription regulation; Alternative Splicing; Amanitins; Cell Line, Tumor; Exons; Fibronectins; Gene Deletion; Humans; Phosphorylation; Protein Structure, Tertiary; RNA Polymerase II; RNA-Binding Proteins; Transcription, Genetic; Transfection
Año:2006
Volumen:13
Número:11
Página de inicio:973
Página de fin:980
DOI: http://dx.doi.org/10.1038/nsmb1155
Título revista:Nature Structural and Molecular Biology
Título revista abreviado:Nat. Struct. Mol. Biol.
ISSN:15459993
CODEN:NSMBC
CAS:arginine, 1119-34-2, 15595-35-4, 7004-12-8, 74-79-3; fibronectin, 86088-83-7; serine, 56-45-1, 6898-95-9; Amanitins; Fibronectins; RNA Polymerase II, EC 2.7.7.-; RNA-Binding Proteins; SFRS3 protein, human
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15459993_v13_n11_p973_DeLaMata

Referencias:

  • Wetterberg, I., Zhao, J., Masich, S., Wieslander, L., Skoglund, U., In situ transcription and splicing in the Balbiani ring 3 gene (2001) EMBO J., 20, pp. 2564-2574
  • Bird, G., Zorio, D.A., Bentley, D.L., RNA polymerase II carboxy-terminal domain phosphorylation is required for cotranscriptional pre-mRNA splicing and 3′-end formation (2004) Mol. Cell. Biol., 24, pp. 8963-8969
  • Das, R., Functional coupling of RNAP II transcription to spliceosome assembly (2006) Genes Dev., 20, pp. 1100-1109
  • Kornblihtt, A.R., De La Mata, M., Fededa, J.P., Munoz, M.J., Nogues, G., Multiple links between transcription and splicing (2004) RNA, 10, pp. 1489-1498
  • Modrek, B., Lee, C., A genomic view of alternative splicing (2002) Nat. Genet., 30, pp. 13-19
  • Johnson, J.M., Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays (2003) Science, 302, pp. 2141-2144
  • Kampa, D., Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22 (2004) Genome Res., 14, pp. 331-342
  • Fededa, J.P., A polar mechanism coordinates different regions of alternative splicing within a single gene (2005) Mol. Cell, 19, pp. 393-404
  • Lenasi, T., Peterlin, B.M., Dovc, P., Distal regulation of alternative splicing by splicing enhancer in equine beta-casein intron 1 (2006) RNA, 12, pp. 498-507
  • Morris, D.P., Greenleaf, A.L., The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA polymerase II (2000) J. Biol. Chem., 275, pp. 39935-39943
  • Carty, S.M., Goldstrohm, A.C., Sune, C., Garcia-Blanco, M.A., Greenleaf, A.L., Protein-interaction modules that organize nuclear function: FF domains of CA150 bind the phosphoCTD of RNA polymerase II (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 9015-9020
  • Kim, E., Du, L., Bregman, D.B., Warren, S.L., Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of pre-mRNA (1997) J. Cell Biol., 136, pp. 19-28
  • Mortillaro, M.J., A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 8253-8257
  • Yuryev, A., The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 6975-6980
  • McCracken, S., The C-terminal domain of RNA polymerase II couples mRNA processing to transcription (1997) Nature, 385, pp. 357-361
  • Misteli, T., Spector, D.L., RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo (1999) Mol. Cell, 3, pp. 697-705
  • Du, L., Warren, S.L., A functional interaction between the carboxy-terminal domain of RNA polymerase II and pre-mRNA splicing (1997) J. Cell Biol., 136, pp. 5-18
  • Roberts, G.C., Gooding, C., Mak, H.Y., Proudfoot, N.J., Smith, C.W., Co-transcriptional commitment to alternative splice site selection (1998) Nucleic Acids Res., 26, pp. 5568-5572
  • Howe, K.J., Kane, C.M., Ares Jr., M., Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae (2003) RNA, 9, pp. 993-1006
  • Kadener, S., Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing (2001) EMBO J., 20, pp. 5759-5768
  • Nogues, G., Kadener, S., Cramer, P., Bentley, D., Kornblihtt, A.R., Transcriptional activators differ in their abilities to control alternative splicing (2002) J. Biol. Chem., 277, pp. 43110-43114
  • De La Mata, M., A slow RNA polymerase II affects alternative splicing in vivo (2003) Mol. Cell, 12, pp. 525-532
  • Yonaha, M., Proudfoot, N.J., Specific transcriptional pausing activates polyadenylation in a coupled in vitro system (1999) Mol. Cell, 3, pp. 593-600
  • Listerman, I., Sapra, A.K., Neugebauer, K.M., Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells (2006) Nat. Struct. Mol. Biol., 13, pp. 815-822
  • Bentley, D.L., Rules of engagement: Co-transcriptional recruitment of pre-mRNA processing factors (2005) Curr. Opin. Cell Biol., 17, pp. 251-256
  • Palancade, B., Bensaude, O., Investigating RNA polymerase II carboxyl-terminal domain (CTD) phosphorylation (2003) Eur. J. Biochem., 270, pp. 3859-3870
  • Kobor, M.S., Greenblatt, J., Regulation of transcription elongation by phosphorylation (2002) Biochim. Biophys. Acta, 1577, pp. 261-275
  • Buratowski, S., The CTD code (2003) Nat. Struct. Biol., 10, pp. 679-680
  • Rosonina, E., Blencowe, B.J., Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 3′-end cleavage (2004) RNA, 10, pp. 581-589
  • Bartolomei, M.S., Halden, N.F., Cullen, C.R., Corden, J.L., Genetic analysis of the repetitive carboxyl-terminal domain of the largest subunit of mouse RNA polymerase II (1988) Mol. Cell. Biol., 8, pp. 330-339
  • Cramer, P., Pesce, C.G., Baralle, F.E., Kornblihtt, A.R., Functional association between promoter structure and transcript alternative splicing (1997) Proc. Natl. Acad. Sci. USA, 94, pp. 11456-11460
  • Meininghaus, M., Chapman, R.D., Horndasch, M., Eick, D., Conditional expression of RNA polymerase II in mammalian cells. Deletion of the carboxyl-terminal domain of the large subunit affects early steps in transcription (2000) J. Biol. Chem., 275, pp. 24375-24382
  • Gerber, H.P., RNA polymerase II C-terminal domain required for enhancer-driven transcription (1995) Nature, 374, pp. 660-662
  • Gossen, M., Bujard, H., Tight control of gene expression in mammalian cells by tetracycline-responsive promoters (1992) Proc. Natl. Acad. Sci. USA, 89, pp. 5547-5551
  • Blau, J., Three functional classes of transcriptional activation domain (1996) Mol. Cell. Biol., 16, pp. 2044-2055
  • Bochnig, P., Reuter, R., Bringmann, P., Luhrmann, R., A monoclonal antibody against 2,2,7-trimethylguanosine that reacts with intact, class U, small nuclear ribonucleoproteins as well as with 7-methylguanosine-capped RNAs (1987) Eur. J. Biochem., 168, pp. 461-467
  • Chapman, R.D., Palancade, B., Lang, A., Bensaude, O., Eick, D., The last CTD repeat of the mammalian RNA polymerase II large subunit is important for its stability (2004) Nucleic Acids Res., 32, pp. 35-44
  • Fong, N., Bird, G., Vigneron, M., Bentley, D.L., A 10 residue motif at the C-terminus of the RNA pol II CTD is required for transcription, splicing and 3′ end processing (2003) EMBO J., 22, pp. 4274-4282
  • Laurencikiene, J., Kallman, A.M., Fong, N., Bentley, D.L., Ohman, M., RNA editing and alternative splicing: The importance of co-transcriptional coordination (2006) EMBO Rep., 7, pp. 303-307
  • Chapman, R.D., Conrad, M., Eick, D., Role of the mammalian RNA polymerase II C-terminal domain (CTD) nonconsensus repeats in CTD stability and cell proliferation (2005) Mol. Cell. Biol., 25, pp. 7665-7674
  • Cramer, P., Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer (1999) Mol. Cell, 4, pp. 251-258
  • Zeng, C., Berget, S.M., Participation of the C-terminal domain of RNA polymerase II in exon definition during pre-mRNA splicing (2000) Mol. Cell. Biol., 20, pp. 8290-8301
  • Fong, N., Bentley, D.L., Capping, splicing, and 3′ processing are independently stimulated by RNA polymerase II: Different functions for different segments of the CTD (2001) Genes Dev., 15, pp. 1783-1795
  • Komarnitsky, P., Cho, E.J., Buratowski, S., Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription (2000) Genes Dev., 14, pp. 2452-2460
  • Lux, C., Transition from initiation to promoter proximal pausing requires the CTD of RNA polymerase II (2005) Nucleic Acids Res., 33, pp. 5139-5144
  • Ryan, K., Murthy, K.G., Kaneko, S., Manley, J.L., Requirements of the RNA polymerase II C-terminal domain for reconstituting pre-mRNA 3′ cleavage (2002) Mol. Cell. Biol., 22, pp. 1684-1692
  • Kadener, S., Fededa, J.P., Rosbash, M., Kornblihtt, A.R., Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 8185-8190
  • Park, N.J., Tsao, D.C., Martinson, H.G., The two steps of poly(A)-dependent termination, pausing and release, can be uncoupled by truncation of the RNA polymerase II carboxyl-terminal repeat domain (2004) Mol. Cell. Biol., 24, pp. 4092-4103
  • McCracken, S., Role of RNA polymerase II carboxy-terminal domain in coordinating transcription with RNA processing (1998) Cold Spring Harb. Symp. Quant. Biol., 63, pp. 301-309
  • Sato, S., A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology (2004) Mol. Cell, 14, pp. 685-691
  • Neugebauer, K.M., Roth, M.B., Distribution of pre-mRNA splicing factors at sites of RNA polymerase II transcription (1997) Genes Dev., 11, pp. 1148-1159
  • Mabon, S.A., Misteli, T., Differential recruitment of pre-mRNA splicing factors to alternatively spliced transcripts in vivo (2005) PLoS Biol., 3, pp. e374
  • Smith, C.W., Valcarcel, J., Alternative pre-mRNA splicing: The logic of combinatorial control (2000) Trends Biochem. Sci., 25, pp. 381-388
  • Matlin, A.J., Clark, F., Smith, C.W., Understanding alternative splicing: Towards a cellular code (2005) Nat. Rev. Mol. Cell Biol., 6, pp. 386-398
  • Caputi, M., A novel bipartite splicing enhancer modulates the differential processing of the human fibronectin EDA exon (1994) Nucleic Acids Res., 22, pp. 1018-1022
  • Elbashir, S.M., Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells (2001) Nature, 411, pp. 494-498
  • Hanamura, A., Caceres, J.F., Mayeda, A., Franza Jr., B.R., Krainer, A.R., Regulated tissue-specific expression of antagonistic pre-mRNA splicing factors (1998) RNA, 4, pp. 430-444

Citas:

---------- APA ----------
De La Mata, M. & Kornblihtt, A.R. (2006) . RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20. Nature Structural and Molecular Biology, 13(11), 973-980.
http://dx.doi.org/10.1038/nsmb1155
---------- CHICAGO ----------
De La Mata, M., Kornblihtt, A.R. "RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20" . Nature Structural and Molecular Biology 13, no. 11 (2006) : 973-980.
http://dx.doi.org/10.1038/nsmb1155
---------- MLA ----------
De La Mata, M., Kornblihtt, A.R. "RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20" . Nature Structural and Molecular Biology, vol. 13, no. 11, 2006, pp. 973-980.
http://dx.doi.org/10.1038/nsmb1155
---------- VANCOUVER ----------
De La Mata, M., Kornblihtt, A.R. RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20. Nat. Struct. Mol. Biol. 2006;13(11):973-980.
http://dx.doi.org/10.1038/nsmb1155