Artículo

Facelli, J.C.; Ferraro, M.B. "From NMR spectra to structure" (2013) Concepts in Magnetic Resonance Part A: Bridging Education and Research. 42(6):261-289
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This article discusses the existing methods to correlate NMR parameters describing the high resolution NMR spectra of liquids and solid systems with their structural parameters. Those methods are divided into direct and indirect ones. This article includes two types of direct methods: those based on the Nuclear Overhauser Effect (NOE) contributions to the NMR relaxation and those based on direct measurements of the dipolar couplings using several experimental approaches. Indirect methods are based on the intrinsic dependence of J couplings and shieldings on the atomic coordinates of the atoms in a molecule and its surroundings, requiring complex quantum mechanical calculations to relate NMR spectral properties to molecular and crystal structure. This article discusses how changes in chemical bonding, conformation, and stereo configurations that cause measurable changes in NMR parameters closely related to molecular and crystal structure. The final section provides information about the software and hardware required to perform calculations needed to solve structural problems using high resolution NMR. This article intends to provide molecular structural researchers new to the field of NMR, with an overall panorama of the potential of using high resolution NMR for structure elucidation, when other more traditional techniques are not feasible. To this end and to emphasize the didactic value of this work, after each section a brief conclusion has been added to recap the critical concepts. © 2014 Wiley Periodicals, Inc.

Registro:

Documento: Artículo
Título:From NMR spectra to structure
Autor:Facelli, J.C.; Ferraro, M.B.
Filiación:Center for High Performance Computing, The University of Utah, Salt Lake City, UT 84112-5775, United States
Department of Biomedical Informatics, The University of Utah, Salt Lake City, UT 84112-5775, United States
Departamento de Física and IFIBA (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
Palabras clave:Chemical shifts; Crystal structure; High resolution NMR; J couplings; Molecular structure; Solid state NMR
Año:2013
Volumen:42
Número:6
Página de inicio:261
Página de fin:289
DOI: http://dx.doi.org/10.1002/cmr.a.21291
Título revista:Concepts in Magnetic Resonance Part A: Bridging Education and Research
Título revista abreviado:Concepts Magn. Reson. Part A. Bridging Educ. Res.
ISSN:15466086
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15466086_v42_n6_p261_Facelli

Referencias:

  • Lippens, G., Jeener, J., The dipolar interaction under all angles (2001) Concepts Magn Reson A, 13, pp. 8-18
  • Levitt, M.H., (2001) Spin Dynamics, , Chichester: Wiley
  • Duer, M.J., (2002) Solid-State NMR Spectroscopy, pp. 46-56. , Oxford: Blackwell Science
  • Anet, F.A.L., Bourn, A.J.R., Carter, P., Winstein, S., Nuclear magnetic resonance spectral assignments from nuclear overhauser effects (1965) J Am Chem Soc, 87, pp. 5250-5251
  • Alderman, D.W., Solum, M.S., Grant, D.M., Methods for analyzing spectroscopic line shapes NMR solid powder patterns (1986) J Chem Phys, 84, pp. 3717-3725
  • Eichele, K., Wasylishen, R.E., Schurko, R.W., Burford, N., Whitla, W.A., An unusually large value of 1J(31P,31P) for a solid triphenylphosphine phosphadiazonium cationic complex: determination of the sign of J from 2D spin-echo experiments (1996) Can J Chem, 74, pp. 2372-2377
  • Griffiths, J.M., Griffiths, R.G., Nuclear magnetic resonance methods for measuring dipolar couplings in rotating solids (1993) Anal Chim Acta, 283, pp. 1081-1101
  • Zilm, K.W., Beeler, A.J., Grant, D.M., Michl, J., Chou, T.C., Allred, E.L., Carbon-13 magnetic resonance dipolar spectroscopy. Orientation of the chemical shift tensor in cyclopropane (1981) J Am Chem Soc, 103, pp. 2119-2120
  • Browna, S.P., Emsley, L., The 2D MAS NMR spin-echo experiment: the determination of 13C-13C J couplings in a solid-state cellulose sample (2004) J Magn Reson, 171, pp. 43-47
  • Grage, S.L., Watts, A., Applications of REDOR for distance meassurements in biological solids (2007) Ann Rep Nucl Magn Reson Spectrosc, 60, pp. 191-228
  • Schnell, I., Dipolar recoupling in fast-MAS solid state NMR spectroscopy (2004) Prog NMR Spectrosc, 45, pp. 145-207
  • Andrew, E.R., Bradbury, A., Eades, R.G., Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation (1959) Nature, 183, pp. 1802-1803
  • Lowe, I.J., Free induction decays of rotating solids (1959) Phys Rev Lett, 2, pp. 285-287
  • Jaroniec, C.P., Dipolar recoupling: heteronuclear (2009) NMR Crystallography, pp. 137-161. , Harris RK, Duer MJ, eds. Chichester: Wiley
  • Guillon, T., Scharfer, J., Rotational-echo double-resonance NMR (1989) J Magn Reson, 81, pp. 196-200
  • Gullion, T., Schaefer, J., Detection of weak heteronuclear dipolar coupling by rotational-echo double-resonance nuclear magnetic resonance (1989) Adv Magn Reson, 13, pp. 57-83
  • Raleigh, D.P., Levitt, M.H., Griffin, R.G., Rotational resonance in solid state NMR (1988) Chem Phys Lett, 146, pp. 71-76
  • Levitt, M.H., Raleigh, D.P., Creuzet, F., Griffin, R.G., Theory and simulations of homonuclear spin pair systems in rotating solids (1990) J Chem Phys, 92, pp. 6347-6364
  • McDowell, L.M., Schaefer, J., High resolution NMR of biological solids (1996) Curr Opin Struct Biol, 6, pp. 624-629
  • Oas, T.G., Griffin, R.G., Levitt, M.H., Rotary resonance recoupling of dipolar interactions in magic angle spinning NMR spectroscopy (1988) J Chem Phys, 89, pp. 692-695
  • Levitt, M.H., Oas, T.G., Griffin, R.G., Rotary resonance recoupling in heteronuclear spin pair systems (1988) Isr J Chem, 28, pp. 271-282
  • Fu, R., Smith, S.A., Bondenhausen, G., Recoupling of heteronuclear dipolar interactions in solid state magic-angle spinning NMR by simulatneous frequency and amplitude modulation (1997) Chem Phys Lett, 272, pp. 361-369
  • Takegoshi, K., Takeda, K., Terao, T., Modulatory resonance recoupling of heteronuclear dipolar interaction under magic angle spinning (1996) Chem Phys Lett, 260, pp. 331-335
  • Duer, M.J., Solid state NMR. Physical organometallic chemistry (1999) Solid State Organometallic Chemistry, pp. 227-277. , Duer MJ, ed. London: Wiley
  • Tycko, R., Dabbagh, G., Measurement of dipole-dipole couplings in magic angle spinning NMR (1990) Chem Phys Lett, 173, pp. 461-465
  • Haeberlen, U., Wangh, J.S., Coherent averaging effects in magnetic resonance (1968) Phys Rev, 175, pp. 453-467
  • Tycko, R., Coupling interactions (2009) NMR Crystallography, , Harris RK, Duer MJ, eds. Chichester: Wiley; 164--176
  • Nielsen, N.C., Bildsoe, H., Jakobsen, H.B., Levitt, H.M., Double-quantum homonuclear rotatory resoanance: efficient recovery in magic-angle spinning nuclear magnetic resonance (1994) J Chem Phys, 101, pp. 1805-1812
  • Gullion, T., Vega, S., A simple magic angle spinning NMR experiment for the dephasing of rotational echoes of dipolar coupled homonuclear spin pairs (1992) Chem Phys Lett, 194, pp. 423-428
  • Ishii, Y.J., 13C-13C dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination (2001) J Chem Phys, 114, pp. 8473-8483
  • Bennett, A.E., Rienstra, C.M., Griffiths, J.M., Zhen, W.G., Lansbury, P.T., Griffin, R.G., Homonuclear radio frequency-driven recoupling in rotating solid (1998) J Chem Phys, 108, pp. 9463-9479. , 1998;:-
  • Oyler, N.A., Tycko, R., Multiple quantum 13C NMR spectroscopy in solids under high-speed magic-angle spinning (2002) J Phys Chem B, 106, pp. 8382-8389
  • Ishii, Y., Balbach, J.J., Tycko, R., Measurement of dipole-coupled lineshapes in a many-spin system by constant-time two-dimensional solid state NMR with high-speed magic-angle spinning (2001) Chem Phys, 266, pp. 231-236
  • Tycko, R., Sensitivity enhancement in two-dimensional solid state NMR spectroscopy by transverse mixing (2004) ChemPhysChem, 5, pp. 863-868
  • Chandrasekha, S., (1992) Liquid Crystals, , 2nd ed. Cambridge: Cambridge University Press
  • Dong, R.Y., (2010) Nuclear Magnetic Resonance Spectroscopy of Liquid Crystals, , Singapore: World Scentific Publishing Co. Pte. Ltd
  • Burnell, E.E., Langue, C.A., Meerts, W.L., Novel strategies for solving highly complex NMR spectra of solutes in liquid crystals (2010) Nuclear Magnetic Spectroscopy of Liquid Crystals, , Ronald YD, ed. Singapore: World Scientific Publishing, Co. Pte. Ltd.;1--35
  • Weitekamp, D.P., Time-domain multiple-quantum NMR (1983) Adv Magn Reson, 11, pp. 111-274
  • Rendell, J.C.T., (1987), Multiple quantum NMR studies of solutes in liquid crystals. PhD Thesis, University of British Columbia; Field, L.W., Terry, M.L., Multiple-quantum NMR spectroscopy of molecules aligned in liquid crystal solvents. Selective quadrature detection of multiple-quantum spectra (1986) J Magn Reson, 69, pp. 176-179
  • Rendell, J.C.T., Burnell, E.E., Frequency selective excitation in multiple quantum NMR (1995) J Magn Reson A, 112, pp. 1-6
  • Rendell, J.C.T., Burnell, E.E., Analysis of single and multiple quantum NMR spectra of 1,3-dichloro-2-ethenylbenzene in liquid crystal solvents (1997) Mol Phys, 90, pp. 541-551. , Gielen M, Willem R, Wrackmeyer B, eds
  • Chandrakumar, T., Polson, J.M., Burnell, E.E., A multiple-quantum 1H-NMR study of conformational biasing of biphenyl in a nematic liquid crystal (1996) J Magn Reson A, 118, pp. 264-271
  • Stephenson, D.S., Binsch, G., Automated analysis of high resolution NMR spectra. II. Illustrative applications of the computer program DAVINS (1980) J Magn Reson, 37, pp. 409-430
  • Castiglione, F., Celebre, G., De Luca, G., Longeri, M., The NMR spectra of samples dissolved in liquid crystalline phases: automatic analysis with the aid of multiple quantum spectra-the case of flexible molecules (2000) J Magn Reson, 142, pp. 216-228
  • Inoue, K., Takeuchi, H., Konaca, S., Molecular structures of related compounds of mesogens studied by 1H NMR using a liquid crystal solvent: Tolan and trans-Azobenzene (2001) J Phys Chem A, 105, pp. 6711-6716
  • Leo Meerts, W., de Lange, C.A., Weber, A.C.J., Burnell, E.E., A simple two-step automatic assignment procedure for complicated NMR spectra of solutes in liquid crystals using genetic algorithms (2007) Chem Phys Lett, 441, pp. 342-346
  • Rechenberg, I., (1973) Evolutions strategie-Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Stuttgart, , Germany: Frommann-Holzboog
  • Hansen, N., Ostermeier, A., Completely derandomized self-adaptation in evolution strategies (2001) Evol Comput, 9, pp. 159-195
  • Neuhaus, D., Williamson, M.P., (2000) The Nuclear Overhauser Effect in Structural and Conformational Analysis, , 2nd ed. New York: Wiley-VCH
  • Butts, C.P., Jones, C.M., Towers, E.M., Flynn, J.L., Appleby, L., Barron, N.J., Interproton distance determinations by NOE-surprising accuracy and precision in a rigid organic molecule (2011) Org Biomol Chem, 9, pp. 177-184
  • Williamson, M.P., Applications of NOE in molecular biology (2009) Annual Reports on NMR Spectroscopy, pp. 77-109. , Webb, GA, ed. Amsterdam: Elsevier
  • Clore, G.M., Gronenborn, A.M., New methods of structure refinement for macromolecular structure determination by NMR (1998) Proc Natl Acad Sci USA, 95, pp. 5891-5898
  • Clore, G.M., Robien, M.A., Gronenborn, A.M., Exploring the limits of precision and accuracy of protein structures determined by nuclear magnetic resonance spectroscopy (1993) J Mol Biol, 231, pp. 82-102
  • Berman, H., The Protein Data Bank: a historical perspective (2008) Acta Crystallogr Sect A, 64, pp. 88-95
  • Rieping, W.H., Habeck, M., Bardiaux, B., Bernard, A., Malliavin, T.E., Nilges, M., ARIA2: automated NOE assignment and data integration in NMR structure calculation (2007) Bioinformatics, 23, pp. 381-382
  • Nabuurs, S.B., Spronk, C.A.E.M., Vriend, G., Vuiste, G.W., Concepts and tools for NMR restraint analysis and validation (2004) Concepts Magn Reson A, 22, pp. 90-105
  • Facelli, J.C., Calculation of chemical shieldings: theory and application (2007) Concepts Magn Reson A, 20, pp. 42-69
  • Contreras, R.H., Peralta, J.E., Giribet, C.G., Ruiz De Azua, M.C., Facelli, J.C., Advances in theoretical and physical aspects of spin-spin coupling constants (2000) Annu Rep NMR Spectrosc, 41, pp. 55-184
  • Facelli, J.C., Chemical shift tensors: theory and application to molecular structural problems (2011) Prog Nucl Magn Reson Spectrosc, 58, pp. 176-201
  • Andrew, E.R., Bradbury, A., Eades, R.G., Jenks, G.J., Fine structure of the nuclear magnetic resonances spectra of solids. Chemical shift structure of the spectrum of phosphorous pentachloride (1960) Nature, 188, pp. 1096-1097
  • Andrew, E.R., Magic angle spinning in solid state NMR spectroscopy (1981) Phil Trans Roy Soc London Ser A, 299, pp. 505-520
  • Kroto, H.W., Klein, S.I., Meidine, M.R., Nixon, J.F., Harris, R.K., Packer, K.J., Reams, P., n1- and n2-Coordination in phosphaalkeneplatinum(0) complexes. High resolution solid state 31P NMR spectrum of mesityl(diphenylmethylene)phosphinebis-(triphenylphosphine)platinum(0) (1985) J Organomet Chem, 280, pp. 281-287
  • Gu, Z., McDermott, A., Chemical shielding anisotropy of protonated and deprotonated carboxylates in amino acids (1993) J Am Chem Soc, 115, pp. 4282-4285
  • Solum, M.S., Altman, K.L., Strohmeier, M., Berges, D.A., Zhang, Y., Facelli, J.C., Pugmire, R.J., Grant, D.M., 15N Chemical shift principal values in nitrogen heterocycles (1997) J Am Chem Soc, 119, pp. 9804-9809
  • Pople, J.A., Beveridge, D.L., (1970) Approximate Molecular Orbital Theory, , New York: McGraw-Hill
  • Muller, N., Pritchard, D.E., C-13 splittings in proton magnetic resonance spectra. I. Hydrocarbons (1959) J Chem Phys, 31, pp. 768-771
  • Zhan, C., Hu, Z., Maximum bond order hybrid orbitals. I. Theoretical method (1993) Theor Chim Acta, 84, pp. 511-520
  • Kovaček, D., Maksic, Z.B., Elbel, S., Kudnig, J., Semiempirical calculation of 29Si NMR chemical shifts and 29Si-13C spin-spin coupling constants in some substituted bridgehead polycycloalkanes (1994) J Mol Struct (Theochem), 304, pp. 247-254
  • Contreras, R.H., Aucar, G.A., Ruiz de Azua, M.C., Giribet, C.G., Theoretical analysis of NMR spin-spin coupling constants (1993) Folia Chim Theor Latina, 21, pp. 83-102
  • Contreras, R.H., Natiello, M.A., Scuseria, G.E., Mechanisms which produce spin-spin coupling in NMR (1985) Magn Reson Rev, 9, pp. 239-321
  • Contreras, R.H., Peralta, J.E., Angular dependence of spin-spin coupling constants (2000) Prog Nucl Magn Reson Spectrosc, 37, pp. 321-425
  • Elyashber, M.E., Blinov, K.A., Williams, A.J., The application of empirical methods of 13C NMR chemical shift prediction as a filter for determining possible relative stereochemistry (2009) Magn Reson Chem, 47, pp. 333-341
  • Bremser, W., HOSE-a novel substructure code (1978) Anal Chim Acta, 103, pp. 355-365
  • Jameson, C.J., de Dios, A.C., The nuclear shielding surface: the shielding as a function of molecular geometry and intermolecular separation (1993) Nuclear Magnetic Shieldings and Molecular Structures, pp. 95-116. , Tossell JA, ed. Dordrecht: Kluwer Academic Publishers
  • de Dios, A.C., Jameson, C.J., The NMR chemical shifts: insight into structure and enviroment (1994) Annu Rep NMR Spectrosc, 29, pp. 1-69
  • Wasylishen, R.E., Friedrich, J.O., Mooibroek, S., Macdonald, J.B., Isotope shifts and spin-spin coupling constants in the carbon-13 and oxygen-17 NMR spectra of carbon monoxide and carbon dioxide (1985) J Chem Phys, 83, pp. 548-551
  • Jameson, C.J., Isotope effects on chemical shifts and coupling constants (1996) Encyclopedia of Magnetic Resonance, , Grant DM, Harris RK, eds. London: Wiley; 2638--2655
  • Chesnut, D.B., Wright, D.W., Chemical shift bond derivatives for molecules containing first-row elements (1991) J Comput Chem, 12, pp. 546-559
  • de Dios, A.C., Pearson, J.G., Oldfield, E., Chemical shift in proteins: an ab intio study of carbon-13 nuclear magnetic resonance chemical shielding in glycine, alanine, and valine residues (1993) J Am Chem Soc, 115, pp. 9768-9773
  • Iuliucci, R.J., Phung Cu, G., Facelli, J.C., Grant, D.M., Carbon-13 chemical shift tensors in polycyclic aromatic compounds. 6. single-crystal study of perylene (1996) J Am Chem Soc, 118, pp. 4880-4888
  • Grant, D.M., Liu, F., Iuliucci, R.J., Robbie, J., Phung Cu, G., Facelli, J.C., Alderman, D.W., Relationship of 13C NMR chemical shift tensors to diffraction structures (1995) Acta Crystallogr B, 51, pp. 540-546
  • Liu, F., Orendt, A.M., Alderman, D.W., Grant, D., Carbon-13 chemical shift tensors in pentaerythritol (1997) J Am Chem Soc, 119, pp. 8981-8984
  • Grant, D.M., Halling, M.D., Metric spaces in NMR crystallography (2009) Concepts Magn Reson A, 34, pp. 217-237
  • Facelli, J.C., Orendt, A.M., Grant, D.M., Michl, J., IGLO calculations of the antisymmetric components of nuclear magnetic shielding tensors (1984) Chem Phys Lett, 112, pp. 147-149
  • Facelli, J.C., Grant, D.M., Determination of molecular symmetry in crystalline naphthalene using solid-state NMR (1993) Nature (London, United Kingdom), 365, pp. 325-327
  • Facelli, J.C., Contreras, R.H., Scuseria, G.E., Engelmann, A.R., The contribution of molecular vibrations to calculated spin-spin coupling constants: a comparison of different commonly used methods (1979) J Mol Struct, 57, pp. 299-303
  • Facelli, J.C., Orendt, A.M., Beeler, A.J., Solum, M.S., Depke, G., Malsch, K.D., Downing, J.W., Michl, J., Low-temperature carbon-13 magnetic resonance in solids. V. Chemical shielding anisotropy of the 13CH2 group (1985) J Am Chem Soc, 107, pp. 6749-6754
  • Vanderhart, D.L., Characterization of the methylene 13C chemical shift tensor in the normal alkane n-C20H42 (1976) J Chem Phys, 64, p. 830
  • Jameson, C.J., de Dios, A.C., Theoretical and physical aspects of nuclear shielding (2007) Specialist Periodical Reports on Nuclear Magnetic Resonance, pp. 50-71. , Webb GA, ed. London: Royal Society
  • Jameson, C.J., de Dios, A.C., Theoretical and physical aspects of nuclear shielding (2009), pp. 68-93. , Webb GA, ed. Nuclear Magnetic Resonance. London: The Royal Soc; Paul, E.G., Grant, D.M., Additivity relationships in carbon-13 chemical shift data for the linear alkanes (1963) J Am Chem Soc, 85, pp. 1701-1702
  • Bunn, A., Cudby, M.A.E., Harris, R.K., Packer, K.J., Say, B.J., Solid-state high-resolution 13C NMR spectra of polypropene (1981) J Chem Soc Chem Commun, 1981, p. 15
  • Solum, M.S., Facelli, J.C., Michl, J., Grant, D., Low-temperature carbon-13 magnetic resonance in solids. VII. Methyl carbons (1986) J Am Chem Soc, 108, pp. 6464-6470
  • Facelli, J.C., Carbon-13 chemical shift tensors and molecular conformation of anisole (1996) J Phys Chem, 100, pp. 8268-8272
  • Carter, C.M., Carbon-13 chemical-shift tensors in single-crystal methoxybenzenes (1988) J Chem Soc Faraday Trans 1, 84, pp. 3673-3690
  • Harper, J.K., Arif, A.M., Grant, D.M., Cis-Verbenol (2000) Acta Crystallogr C, 56, pp. 451-452
  • Harper, J.K., 13C NMR Investigation of solid-state polymorphism in 10-deacetyl baccatin III (2002) J Am Chem Soc, 124, pp. 10589-10595
  • Harper, J.K., Stereochemical analysis by solid-state NMR: structural predictions in ambuic acid (2003) J Org Chem, 68, pp. 4609-4614
  • Smith, J., Application of two-dimensional 13C solid-state NMR to the study of conformational polymorphism (1998) J Am Chem Soc, 120, pp. 11710-11713
  • Smith, J.R., Xu, W., Raftery, D., Analysis of conformational polymorphism in pharmacuetical solids using solid state NMR and electronic structure calculations (2006) J Phys Chem B, 110, pp. 7766-7776
  • Harris, R.K., NMR crystallography of oxybuprocaine hydrochloride, modification II (2007) Phys Chem Chem Phys, 9, pp. 360-368
  • de Dios, A.C., Oldfield, E., Chemical shifts of carbonyl carbons in peptides and proteins (1994) J Am Chem Soc, 116, pp. 11485-11488
  • de Dios, A.C., Oldfield, E., Recent progress in understanding chemical shifts (1996) Solid State Nucl Magn Reson, 6, pp. 101-125
  • Shen, Y., Bax, A., Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology (2007) J Biomol NMR, 38, pp. 289-302
  • Aguilar-Parrilla, F., 15N NMR chemical shifts of NH-pyrazoles in the solid state and in solution at low temperature (1994) Magn Reson Chem, 32, pp. 699-702
  • Wishart, D.S., Sykes, B.D., Richards, F.M., Relationship between nuclear magnetic resonance chemical shift and protein secondary structure (1991) J Mol Biol, 222, pp. 311-333
  • Neal, S., Accurate prediction of protein torsion angles using chemical shifts and sequence homology (2006) Magn Reson Chem, 44, pp. S158-S167
  • Vila, J.A., Ripoll, D.R., Scheraga, H.A., Use of 13C-a chemical shifts in protein structure determination (2007) J Phys Chem B, 111, pp. 6577-6585
  • de Dios, A.C., Pearson, J.G., Oldfield, E., Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initio approach (1993) Science (Washington, DC, United States), 260, pp. 1491-1496
  • de Dios, A.C., Oldfield, E., Ab initio study of the effects of torsion angles on carbon-13 nuclear magnetic resonance chemical shielding in N-formyl-l-alanine amide, N-formyl-l-valine amide, and some simple model compounds: applications to protein NMR spectroscopy (1994) J Am Chem Soc, 116, pp. 5307-5314
  • Havlin, R., Solid state NMR and density functional investigations of carbon-13 shielding tensors in metal-olefin complexes (1997) J Phys Chem A, 101, pp. 8908-8913
  • Heller, J., Determination of dihedral angles in peptides through experimental and theoretical studies of α-carbon chemical shielding tensors (1997) J Am Chem Soc, 119, pp. 7827-7831
  • Matsunaga, N., Sohlberg, K., The effect of substituents on molecular electronic junctions (2002) J Nanosci Nanotechnol, 2, pp. 659-667
  • Strohmeier, M., Grant, D.M., Experimental and theoretical investigation of the 13C and 15N chemical shift tensors in melanostatin-exploring the chemical shift tensor as a structural probe (2004) J Am Chem Soc, 126, pp. 966-977
  • Xu, X.P., Au-Yeung, S.C.F., Investigation of chemical shift and structure relationships in nucleic acids using NMR and density functional theory methods (2000) J Phys Chem B, 104, pp. 5641-5650
  • Precechtelova, H., Relationships between 31P chemical shifts tensors and conformation of nucleic acid backbone: a DFT study (2007) J Phys Chem B, 111, pp. 2658-2667
  • Ghose, R., Dependence of 13C chemical shifts on glycosidic torsional angles in ribonucleic acids (1994) J Am Chem Soc, 116, pp. 8827-8828
  • Ebrahimi, M., Dependence of 13C NMR chemical shifts on conformations of RNA nucleosides and nucleotides (2001) J Magn Reson, 150, pp. 1-9
  • Saito, H., Polysaccharide solid state NMR (1996) Encyclopedia of Magnetic Resonance, , Grant DM, Harris RK, eds. London: Wiley; 3740--3745
  • Sergeyev, I., Moyna, G., Determination of the three dimensional structure of oligosaccharides in the solid state from experimental 13C NMR data and ab initio chemical shift surfaces (2005) Carbohydr Res, 340, pp. 1165-1174
  • (2004), NIST Standard Reference Database, C.C.C.a.B.D; Karplus, M., Contact electron-spin coupling of nuclear magnetic moments (1959) J Chem Phys, 30, pp. 11-15
  • Haasnoot, C.A.G., De Leeuw, F.A.A.M., Altona, C., The relation between proton-proton NMR coupling constants and substituent electronegativities. I. An empirical generalization of the Karplus equation (1980) Tetrahedron, 36, pp. 2783-2792
  • Parr, W.J.E., Schaefer, T., The J method: application of NMR spectroscopy to the determination of small internal rotation barriers in solution (1980) Acc Chem Res, 13, pp. 400-406
  • San Fabián, J., (1993) Chem Phys Lett, 206, p. 253
  • San Fabián, J., Vicinal proton-proton coupling constants. IV. Effect of individual substituents with second row α-atoms (1994) Mol Phys, 82, pp. 913-928
  • Guilleme, J., San Fabian, J., Diez, E., Vicinal proton-proton coupling constants. V. Couplings to methyl groups (1997) Mol Phys, 91, pp. 343-356
  • San Fabián, J., Guilleme, J., Diez, E., Effect of b hydrogens on vicinal proton couplings 3JHH (1995) Anal Quim, 91, pp. 200-205
  • Schaefer, T., A precise analysis of the 1H nuclear magnetic resonance spectrum of 2-phenyl-1,3-dithiane. Ring pucker, signs of long-range J(H,H), internal rotational barrier, and van der Waals shifts (1994) Can J Chem, 72, pp. 1722-1727
  • Barfield, M., Smith, W.B., Internal H-C-C angle dependence of vicinal 1H-1H coupling constants (1992) J Am Chem Soc, 114, pp. 1574-1581
  • Smith, W.B., Barfield, M., Predictions of 3J(HH) near 180°-reparameterization of the sp3-sp3 equation (1993) Magn Reson Chem, 31, pp. 696-697
  • Vuister, G.W., Bax, A., Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNHa) coupling constants in 15N-enriched proteins (1993) J Am Chem Soc, 115, pp. 7772-7777
  • Jimeno, M., 1H NMR study of the conformation of metallapentacycles NCCOM [M=Rh(III) and Ir(III)] resulting in a Karplus-type relationship for vicinal H-C(sp3)-N(sp3)-H coupling constants (1996) Magn Reson Chem, 34, pp. 42-46
  • Engelsen, S.B., Internal motions of carbohydrates as probed by comparative molecular modeling and nuclear magnetic resonance of ethyl β-lactoside (1995) J Comput Chem, 16, pp. 1096-1119
  • Altona, C., Empirical group electronegativities for vicinal NMR proton-proton couplings along a C-C bond: solvent effects and reparameterization of the Haasnoot equation (1994) Magn Reson Chem, 32, pp. 670-678
  • Tvaroska, I., Hricovini, M., Petrakova, E., An attempt to derive a new Karplus-type equation of vicinal proton-carbon coupling constants for C-O-C-H segments of bonded atoms (1989) Carbohydr Res, 189, pp. 359-362
  • Rundlof, T., Long-range proton-carbon coupling constants in conformational analysis of oligosaccharides (1998) Magn Reson Chem, 36, pp. 839-847
  • San Fabián, J., Guilleme, J., Diez, E., Vicinal carbon-proton coupling constants. Angular dependence and fluorine substituent effects (1998) Theochem, 426, pp. 117-133
  • Wang, A.C., Bax, A., Reparametrization of the Karplus relation for 3J(Ha-N) and 3J(HN-C') in peptides from uniformly 13C/15N-enriched human ubiquitin (1995) J Am Chem Soc, 117, pp. 1810-1813
  • Wang, A.C., Bax, A., Determination of the backbone dihedral angles j in human ubiquitin from reparametrized empirical karplus equations (1996) J Am Chem Soc, 118, pp. 2483-2494
  • Parella, T., Sanchez-Ferrando, F., Virgili, A., Experimental evidence for the breakdown of the Karplus relationship for 3J(13C, 1H) in 1H-C-C=13C Systems (1997) Magn Reson Chem, 35, pp. 30-34
  • Keah, H.H., Rae, I.D., Vicinal carbon-hydrogen coupling as an aid to stereochemical assignments in substituted propenoic acids (1993) Aust J Chem, 46, pp. 1413-1419
  • Marton, J., Morphine alkaloids. 134. Reaction of morphinan-6,8-dienes with azadienophiles (1996) Tetrahedron, 52, pp. 2449-2464
  • Orendt, A.M., Chemical shift tensor measurement in solids (2003) Encyclopedia of Nuclear Magnetic Resonance, pp. 1282-1296. , Grant DM, Harris RK, eds. London: Wiley
  • Orendt, A.M., Facelli, J.C., Solid state effects on NMR chemical shifts (2007) Ann Rep NMR Spectrosc, 62, pp. 115-178
  • Augspurger, J.D., Intra - and intromolecular electrial effects on nuclear magnetic resonance, nuclear quadrupole resonance and infra-red pectroscopic parameters from ab initio calculation and experiment: from CO to proteins (1993) Nuclear Magnetic Shieldings and Molecular Structure, 386. , Tossell JA, ed., Boston: Kluwer Academic Publisher
  • de Dios, A.C., Oldfield, E., Methods for computing nuclear magnetic resonance chemical shielding in large systems. Multiple cluster and charge field approaches (1993) Chem Phys Lett, 205, pp. 108-116
  • Ferraro, M.B., Repetto, V., Facelli, J.C., Modeling NMR chemical shifts: a comparison of charge models for solid state effects on 15N chemical shift tensors (1998) Solid State Nucl Magn Reson, 10, pp. 185-189
  • Solis, D., Ferraro, M.B., Solid-state nuclear magnetic resonance: performance of point-charge distributions to model intermolecular effects in 19F chemical shifts (2000) Theor Chem Acc, 104, pp. 323-326
  • Solis, D., Ferraro, M.B., Facelli, J.C., Modeling NMR chemical shifts: surface charge representation of the electrostatic embedding potential modeling of crystalline intermolecular effects in 19F solid state NMR chemical shifts (2002) J Mol Struct, 602-603, pp. 159-164
  • Stueber, D., Guenneau, F.N., Grant, D.M., The calculation of 13C chemical shielding tensors in ionic compounds utilizing point charge arrays obtained from Ewald lattice sums (2001) J Chem Phys, 114, pp. 9236-9243
  • Stueber, D., Carbonates, thiocarbonates, and the corresponding monoalkyl derivatives. III.1. The 13C chemical shift tensors in potassium carbonate, bicarbonate and related monomethyl derivatives (2002) Solid State Nucl Magn Reson, 22, pp. 29-49
  • Di Fiori, N., Modeling solid state effects on NMR chemical shifts using electrostatic models (2004) Magn Reson Chem, 42, pp. S41-S47
  • von Ragué Schleyer, P., Nucleus-independent chemical shifts: a simple and efficient aromaticity probe (1996) J Am Chem Soc, 118, pp. 6317-6318
  • Jemmis, E.D., The remarkably stabilized trilithiocyclopropenium ion, C3Li3+, and its relatives (1997) J Am Chem Soc, 119, pp. 9504-9512
  • Jiao, H., Theoretical studies of the structure, aromaticity, and magnetic properties of o-benzyne (1998) Angew Chem Int Ed, 36, pp. 2761-2764
  • Facelli, J.C., Intermolecular shielding by molecular magnetic susceptibility. A new view of intermolecular ring current effects (2006) Magn Reson Chem, 44, pp. 401-408
  • Sebastiani, D., Parrinello, M., A new ab-initio approach for the calculation of NMR chemical shifts in periodic systems (2001) J Phys Chem A, 105, pp. 1951-1958
  • Sebastiani, D., NMR chemical shifts in periodic systems from first principles (2002) Comput Phys Commun, 147, pp. 707-710
  • Sebastiani, D., Ab-Initio calculations of NMR parameters in condensed phases (2003) Mod Phys Lett B, 17, pp. 1301-1319
  • Sebastiani, D., Rothlisberger, U., Nuclear magnetic resoance chemical shifts from hybrid DFT QM/MM calculations (2004) J Phys Chem B, 108, pp. 2807-2815
  • Sebastiani, D., Current densities and nucleus-independent chemical shift maps from reciprocal-space density functional perturbation theory calculations (2006) ChemPhysChem, 7, pp. 164-175
  • Parrinello, M., Andreoni, A., http://www.cpmd.org/, CPMD V3.9,, Copyright IBM Corp 1990-2006, Copyright MPI fuer Festkoerperforschung Stuttgart, 1997-2001; Mauri, F., Pfrommer, B.G., Louie, S.G., Ab initio theory of NMR chemical shifts in solids and liquids (1996) Phys Rev Lett, 77, pp. 5300-5303
  • Pickard, C.J., Mauri, F., All-electron magnetic response with pseudopotentials: NMR chemical shifts (2001) Phys Rev B, 63, p. 245101
  • Gregor, T., Mauri, F., Car, R., A comparison of methods for the calculation of NMR chemical shifts (1999) J Chem Phys, 111, pp. 1815-1822
  • Buda, F., Giannozzi, P., Mauri, F., Density functional theory study of the structure and 13C chemical shifts of retinylidene iminium salts (2000) J Phys Chem B, 104, pp. 9048-9053
  • Pfrommer, B.G., Mauri, F., Louie, S.G., NMR chemical shifts of ice and liquid water: the effects of condensation (2000) J Am Chem Soc, 122, pp. 123-129
  • Yates, J.R., Relativistic nuclear magnetic resonance chemical shifts of heavy nuclei with pseudopotentials and the zeroth-order regular approximation (2003) J Chem Phys, 118, pp. 5746-5753
  • Gervais, C., Combined first-principles computational and experimental multinuclear solid-state NMR investigation of amino acids (2005) J Phys Chem A, 109, pp. 6960-6969
  • Yates, J.R., Theoretical investigation of oxygen-17 NMR shielding and electric field gradients in glutamic acid polymorphs (2004) J Phys Chem A, 108, pp. 6032-6037
  • Benoit, M., First-principles calculation of the 17O NMR parameters of a calcium aluminosilicate glass (2005) J Phys Chem B, 109, pp. 6052-6060
  • Rossano, S., First-principles calculation of 17O and 25Mg NMR shieldings in MgO at finite temperature: rovibrational effect in solids (2005) J Phys Chem B, 109, pp. 7245-7250
  • Yates, J.R., A combined first principles computational and solid-state NMR study of a molecular crystal: flurbiprofen (2005) Phys Chem Chem Phys, 7, pp. 1402-1407
  • Giannozzi, P., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials (2009) J Phys Condens Matter, 21, pp. 395502-395519
  • Harris, K.D.M., New oportunities for structure determination of molecular materials directly from powder diffraction data (2003) Cryst Growth Des, 3, pp. 887-895
  • Harris, K.D.M., Xu, M., Combined analysis of NMR & powder diffraction data (2009) NMR Crystallography, pp. 275-286. , Harris RK, Wasylishen RE, Duer MJ, eds. London: Wiley
  • Harris, R.K., Wasylishen, R.E., Duer, M.J., (2009) NMR Crystallography, , London: Wiley
  • Meejoo, S., Structural aspects of the β-polymorph of (Ε)-4-formylcinnamic acid: structure determination directly from powder diffraction data and elucidation of structural disorder from solid-state NMR (2003) Helv Chim Acta, 86, pp. 1467-1477
  • Witter, R., 13C Chemical shift constrained crystal structure refinement of cellulose iα and its verification by NMR anisotropy experiments (2006) Macromolecules, 39, pp. 6125-6132
  • Nishiyama, Y., Crystal structure and hydrogen bonding system in cellulose 1(α), from synchrotron X-ray and neutron fiber diffraction (2003) J Am Chem Soc, 125, pp. 14300-14306
  • Harper, J.K., A combined solid-state NMR and synchrotron X-ray diffraction powder study on the structure of the antioxidant (+)-Catechin 4.5-hydrate (2010) J Am Chem Soc, 132, pp. 2928-2937
  • Heider, E.M., Harper, J.K., Grant, D.M., Structural characterization of an anhydrous polymorph of paclitaxel by solid-state NMR (2007) Phys Chem Chem Phys, 9, pp. 6083-6097
  • Gervais, C., Ab initio calculations of NMR parameters of highly coordinated oxygen sites in aluminosilicates (2004) J Phys Chem B, 108, pp. 13249-13253
  • Malkin, V.G., Nuclear magnetic resonance shielding tensors calculated with a sum-over-states density functional perturbation theory (1994) J Am Chem Soc, 116, pp. 5898-5908
  • Frisch, M.J., (2009) Gaussian 09, Revision A.1, , Wallingford, CT: Gaussian, Inc
  • Wolinski, K., Hinton, J.F., Pulay, P., Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations (1990) J Am Chem Soc, 112, pp. 8251-8260
  • Pulay, P., Hinton, J.F., Shielding theory: GIAO method (1996) Encyclopedia of Nuclear Magnetic Resonance, pp. 4334-4339. , Grant DM, Harris RK, eds. London: Wiley
  • Hinton, J.F., Ab initio quantum mechanical calculation of the chemical shift anisotropy of the hydrogen atom in the (H2O)17 cluster (1992) J Am Chem Soc, 114, pp. 1604-1605

Citas:

---------- APA ----------
Facelli, J.C. & Ferraro, M.B. (2013) . From NMR spectra to structure. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 42(6), 261-289.
http://dx.doi.org/10.1002/cmr.a.21291
---------- CHICAGO ----------
Facelli, J.C., Ferraro, M.B. "From NMR spectra to structure" . Concepts in Magnetic Resonance Part A: Bridging Education and Research 42, no. 6 (2013) : 261-289.
http://dx.doi.org/10.1002/cmr.a.21291
---------- MLA ----------
Facelli, J.C., Ferraro, M.B. "From NMR spectra to structure" . Concepts in Magnetic Resonance Part A: Bridging Education and Research, vol. 42, no. 6, 2013, pp. 261-289.
http://dx.doi.org/10.1002/cmr.a.21291
---------- VANCOUVER ----------
Facelli, J.C., Ferraro, M.B. From NMR spectra to structure. Concepts Magn. Reson. Part A. Bridging Educ. Res. 2013;42(6):261-289.
http://dx.doi.org/10.1002/cmr.a.21291