Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Proteins are sensitive to temperature, and abrupt changes in the normal temperature conditions can have a profound impact on both structure and function, leading to protein unfolding. However, the adaptation of certain organisms to extreme conditions raises questions about the structural features that permit the structure and function of proteins to be preserved under these adverse conditions. To gain insight into the molecular basis of protein thermostability in the globin family, we have examined three representative examples: human neuroglobin, horse heart myoglobin, and Drosophila hemoglobin, which differ in their melting temperatures and coordination states of the heme iron in the absence of external ligands. In order to elucidate the possible mechanisms that govern the thermostability of these proteins, microsecond-scale classical molecular dynamics simulations were performed at different temperatures. Structural fluctuations and essential dynamics were analyzed, indicating that the flexibility of the CD region, which includes the two short C and D helixes and the connecting CD loop, is directly related to the thermostability. We observed that a larger inherent flexibility of the protein produces higher thermostability, probably concentrating the thermal fluctuations observed at high temperature in flexible regions, preventing unfolding. Globally, the results of this work improve our understanding of thermostability in the globin family. © 2018 American Chemical Society.

Registro:

Documento: Artículo
Título:Thermal Stability of Globins: Implications of Flexibility and Heme Coordination Studied by Molecular Dynamics Simulations
Autor:Julió Plana, L.; Nadra, A.D.; Estrin, D.A.; Luque, F.J.; Capece, L.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Química Física de Los Materiales, Medio Ambiente y Energía, Buenos Aires, C1428EGA, Argentina
Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/IQUIBICEN-CONICET, Buenos Aires, C1428EGA, Argentina
Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Campus Torribera, Santa Coloma de Gramenet, 08921, Spain
Institute of Biomedicine (IBUB), Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Barcelona, 08028, Spain
Palabras clave:Hemoglobin; Molecular dynamics; Porphyrins; Stability; Thermodynamic stability; Classical molecular dynamics; Horse heart myoglobin; Inherent flexibility; Molecular dynamics simulations; Protein thermostabilities; Structural fluctuations; Temperature conditions; Thermal fluctuations; Proteins
Año:2019
Volumen:59
Número:1
Página de inicio:441
Página de fin:452
DOI: http://dx.doi.org/10.1021/acs.jcim.8b00840
Título revista:Journal of Chemical Information and Modeling
Título revista abreviado:J. Chem. Inf. Model.
ISSN:15499596
CODEN:JCISD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15499596_v59_n1_p441_JulioPlana

Referencias:

  • Burmester, T., Weich, B., Reinhardt, S., Hankeln, T., A Vertebrate Globin Expressed in the Brain (2000) Nature, 407, pp. 520-523
  • Vinogradov, S.N., Hoogewijs, D., Bailly, X., Arredondo-Peter, R., Guertin, M., Gough, J., Dewilde, S., Vanfleteren, J.R., Three Globin Lineages Belonging to Two Structural Classes in Genomes from the Three Kingdoms of Life (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 11385-11389
  • Vinogradov, S.N., Hoogewijs, D., Bailly, X., Arredondo-Peter, R., Gough, J., Dewilde, S., Moens, L., Vanfleteren, J.R., A Phylogenomic Profile of Globins (2006) BMC Evol. Biol., 6, p. 31
  • Jain, R., Chan, M.K., Mechanisms of Ligand Discrimination by Heme Proteins (2003) JBIC, J. Biol. Inorg. Chem., 8, pp. 1-11
  • Bustamante, J.P., Radusky, L., Boechi, L., Estrin, D.A., Ten Have, A., Martí, M.A., Evolutionary and Functional Relationships in the Truncated Hemoglobin Family (2016) PLoS Comput. Biol., 12, p. e1004701
  • Capece, L., Marti, M.A., Bidon-Chanal, A., Nadra, A., Luque, F.J., Estrin, D.A., High Pressure Reveals Structural Determinants for Globin Hexacoordination: Neuroglobin and Myoglobin Cases (2009) Proteins: Struct., Funct., Genet., 75, pp. 885-894
  • Boron, I., Capece, L., Pennacchietti, F., Wetzler, D.E., Bruno, S., Abbruzzetti, S., Chisari, L., Nadra, A.D., Engineered Chimeras Reveal the Structural Basis of Hexacoordination in Globins: A Case Study of Neuroglobin and Myoglobin (2015) Biochim. Biophys. Acta, Gen. Subj., 1850, pp. 169-177
  • Morzan, U.N., Capece, L., Marti, M.A., Estrin, D.A., Quaternary Structure Effects on the Hexacoordination Equilibrium in Rice Hemoglobin RHb1: Insights from Molecular Dynamics Simulations (2013) Proteins: Struct., Funct., Genet., 81, pp. 863-873
  • Chen, L., Roberts, M.F., Characterization of a Tetrameric Inositol Monophosphatase from the Hyperthermophilic Bacterium Thermotoga Maritima (1999) Appl. Environ. Microbiol., 65, pp. 4559-4567
  • Auerbach, G., Ostendorp, R., Prade, L., Korndörfer, I., Dams, T., Huber, R., Jaenicke, R., Lactate Dehydrogenase from the Hyperthermophilic Bacterium Thermotoga Maritima: The Crystal Structure at 2.1 Å Resolution Reveals Strategies for Intrinsic Protein Stabilization (1998) Structure, 6, pp. 769-781
  • Vieille, C., Hess, J.M., Kelly, R.M., Zeikus, J.G., XylA Cloning and Sequencing and Biochemical Characterization of Xylose Isomerase from Thermotoga Neapolitana (1995) Appl. Environ. Microbiol., 61, pp. 1867-1875
  • Donati, E.R., Castro, C., Urbieta, M.S., Thermophilic Microorganisms in Biomining (2016) World J. Microbiol. Biotechnol., 32, p. 179
  • Zeldes, B.M., Keller, M.W., Loder, A.J., Straub, C.T., Adams, M.W.W., Kelly, R.M., Extremely Thermophilic Microorganisms as Metabolic Engineering Platforms for Production of Fuels and Industrial Chemicals (2015) Front. Microbiol., 6, p. 1209
  • Bryngelson, J.D., Onuchic, J.N., Socci, N.D., Wolynes, P.G., Funnels, Pathways, and the Energy Landscape of Protein Folding: A Synthesis (1995) Proteins: Struct., Funct., Genet., 21, pp. 167-195
  • Vogt, G., Woell, S., Argos, P., Protein Thermal Stability, Hydrogen Bonds, and Ion Pairs (1997) J. Mol. Biol., 269, pp. 631-643
  • Matthews, B.W., Nicholson, H., Becktel, W.J., Enhanced Protein Thermostability from Site-Directed Mutations That Decrease the Entropy of Unfolding (1987) Proc. Natl. Acad. Sci. U. S. A., 84, pp. 6663-6667
  • Tang, K.E.S., Dill, K.A., Native Protein Fluctuations: The Conformational-Motion Temperature and the Inverse Correlation of Protein Flexibility with Protein Stability (1998) J. Biomol. Struct. Dyn., 16, pp. 397-411
  • Mamonova, T.B., Glyakina, A.V., Galzitskaya, O.V., Kurnikova, M.G., Stability and Rigidity/Flexibility - Two Sides of the Same Coin? (2013) Biochim. Biophys. Acta, Proteins Proteomics, 1834, pp. 854-866
  • Manco, G., Giosuè, E., D'Auria, S., Herman, P., Carrea, G., Rossi, M., Cloning, Overexpression, and Properties of a New Thermophilic and Thermostable Esterase with Sequence Similarity to Hormone-Sensitive Lipase Subfamily from the Archaeon Archaeoglobus fulgidus (2000) Arch. Biochem. Biophys., 373, pp. 182-192
  • Gershenson, A., Schauerte, J.A., Giver, L., Arnold, F.H., Tryptophan Phosphorescence Study of Enzyme Flexibility and Unfolding in Laboratory-Evolved Thermostable Esterases (2000) Biochemistry, 39, pp. 4658-4665
  • Závodszky, P., Kardos, J., Svingor, A., Petsko, G.A., Adjustment of Conformational Flexibility Is a Key Event in the Thermal Adaptation of Proteins (1998) Proc. Natl. Acad. Sci. U. S. A., 95, pp. 7406-7411
  • Lazaridis, T., Lee, I., Karplus, M., Dynamics and Unfolding Pathways of a Hyperthermophilic and a Mesophilic Rubredoxin (1997) Protein Sci., 6, pp. 2589-2605
  • Quezada, A.G., Díaz-Salazar, A.J., Cabrera, N., Pérez-Montfort, R., Pineiro, A., Costas, M., Interplay between Protein Thermal Flexibility and Kinetic Stability (2017) Structure, 25, pp. 167-179
  • Bustamante, J.P., Bonamore, A., Nadra, A.D., Sciamanna, N., Boffi, A., Estrin, D.A., Boechi, L., Molecular Basis of Thermal Stability in Truncated (2/2) Hemoglobins (2014) Biochim. Biophys. Acta, Gen. Subj., 1840, pp. 2281-2288
  • Hamdane, D., Kiger, L., Dewilde, S., Uzan, J., Burmester, T., Hankeln, T., Moens, L., Marden, M.C., Hyperthermal Stability of Neuroglobin and Cytoglobin (2005) FEBS J., 272, pp. 2076-2084
  • De Sanctis, D., Dewilde, S., Vonrhein, C., Pesce, A., Moens, L., Ascenzi, P., Hankeln, T., Bolognesi, M., Bishistidyl Heme Hexacoordination, a Key Structural Property in Drosophila Melanogaster Hemoglobin (2005) J. Biol. Chem., 280, pp. 27222-27229
  • Barends, T.R.M., Foucar, L., Ardevol, A., Nass, K., Aquila, A., Botha, S., Doak, R.B., Schlichting, I., Direct Observation of Ultrafast Collective Motions in CO Myoglobin upon Ligand Dissociation (2015) Science, 350, pp. 445-450
  • Pesce, A., Dewilde, S., Nardini, M., Moens, L., Ascenzi, P., Hankeln, T., Burmester, T., Bolognesi, M., Human Brain Neuroglobin Structure Reveals a Distinct Mode of Controlling Oxygen Affinity (2003) Structure, 11, pp. 1087-1095
  • Arroyo Manez, P., Lu, C., Boechi, L., Martí, M.A., Shepherd, M., Wilson, J.L., Poole, R.K., Estrin, D.A., Role of the Distal Hydrogen-Bonding Network in Regulating Oxygen Affinity in the Truncated Hemoglobin III from Campylobacter Jejuni (2011) Biochemistry, 50, pp. 3946-3956
  • Capece, L., Marti, M.A., Crespo, A., Doctorovich, F., Estrin, D.A., Heme Protein Oxygen Affinity Regulation Exerted by Proximal Effects (2006) J. Am. Chem. Soc., 128, pp. 12455-12461
  • Case, D.A., Babin, V., Berryman, J.T., Betz, R.M., Cai, Q., Cerutti, D.S., Cheatham, T.E., III, Kollman, P.A., (2014) AMBER 14, , University of California: San Francisco
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of Simple Potential Functions for Simulating Liquid Water (1983) J. Chem. Phys., 79, pp. 926-935
  • Marti, M.A., Crespo, A., Capece, L., Boechi, L., Bikiel, D.E.D.E., Scherlis, D.A.D.A., Estrin, D.A., Dioxygen Affinity in Heme Proteins Investigated by Computer Simulation (2006) J. Inorg. Biochem., 100, pp. 761-770
  • Marti, M.A., Capece, L., Bidon-Chanal, A., Crespo, A., Guallar, V., Luque, F.J., Estrin, D.A., Nitric Oxide Reactivity with Globins as Investigated Through Computer Simulation (2008) Methods Enzymol., 437, pp. 477-498
  • Bikiel, D.E., Boechi, L., Capece, L., Crespo, A., De Biase, P.M., Di Lella, S., González Lebrero, M.C., Estrin, D.A., Modeling Heme Proteins Using Atomistic Simulations (2006) Phys. Chem. Chem. Phys., 8, pp. 5611-5628
  • Perissinotti, L.L., Marti, M.A., Doctorovich, F., Luque, F.J., Estrin, D.A., A Microscopic Study of the Deoxyhemoglobin-Catalyzed Generation of Nitric Oxide from Nitrite Anion (2008) Biochemistry, 47, pp. 9793-9802
  • Giordano, D., Boechi, L., Vergara, A., Martí, M.A., Samuni, U., Dantsker, D., Grassi, L., Verde, C., The Hemoglobins of the Sub-Antarctic Fish Cottoperca Gobio, a Phyletically Basal Species - Oxygen-Binding Equilibria, Kinetics and Molecular Dynamics (2009) FEBS J., 276, pp. 2266-2277
  • Capece, L., Lewis-Ballester, A., Marti, M.A., Estrin, D.A., Yeh, S.R., Molecular Basis for the Substrate Stereoselectivity in Tryptophan Dioxygenase (2011) Biochemistry, 50, pp. 10910-10918
  • Forti, F., Boechi, L., Bikiel, D., Martí, M.A., Nardini, M., Bolognesi, M., Viappiani, C., Luque, F.J., Ligand Migration in Methanosarcina Acetivorans Protoglobin: Effects of Ligand Binding and Dimeric Assembly (2011) J. Phys. Chem. B, 115, pp. 13771-13780
  • Ryckaert, J.-P., Ciccotti, G., Berendsen, H.J.C., Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes (1977) J. Comput. Phys., 23, pp. 327-341
  • Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., Dinola, A., Haak, J.R., Molecular Dynamics with Coupling to an External Bath (1984) J. Chem. Phys., 81, pp. 3684-3690
  • Wu, X., Brooks, B.R., Vanden-Eijnden, E., Self-Guided Langevin Dynamics via Generalized Langevin Equation (2016) J. Comput. Chem., 37, pp. 595-601
  • Humphrey, W., Dalke, A., Schulten, K., VMD: Visual Molecular Dynamics (1996) J. Mol. Graphics, 14, pp. 33-38
  • Amadei, A., Linssen, A.B.M., Berendsen, H.J.C., Essential Dynamics of Proteins (1993) Proteins: Struct., Funct., Genet., 17, pp. 412-425
  • Nadra, A.D., Martí, M.A., Pesce, A., Bolognesi, M., Estrin, D.A., Exploring the Molecular Basis of Heme Coordination in Human Neuroglobin (2008) Proteins: Struct., Funct., Genet., 71, pp. 695-705
  • Bidon-Chanal, A., Martí, M.A., Crespo, A., Milani, M., Orozco, M., Bolognesi, M., Luque, F.J., Estrin, D.A., Ligand-Induced Dynamical Regulation of NO Conversion in Mycobacterium Tuberculosis Truncated Hemoglobin-N (2006) Proteins: Struct., Funct., Genet., 64, pp. 457-464
  • Trent, J.T., Watts, R.A., Hargrove, M.S., Human Neuroglobin, a Hexacoordinate Hemoglobin That Reversibly Binds Oxygen (2001) J. Biol. Chem., 276, pp. 30106-30110
  • Wintrode, P.L., Zhang, D., Vaidehi, N., Arnold, F.H., Goddard, W.A., Protein Dynamics in a Family of Laboratory Evolved Thermophilic Enzymes (2003) J. Mol. Biol., 327, pp. 745-757
  • Colombo, G., Merz, K.M., Stability and Activity of Mesophilic Subtilisin e and Its Thermophilic Homolog: Insights from Molecular Dynamics Simulations (1999) J. Am. Chem. Soc., 121, pp. 6895-6903
  • Andricioaei, I., Karplus, M., On the Calculation of Entropy from Covariance Matrices of the Atomic Fluctuations (2001) J. Chem. Phys., 115, pp. 6289-6292
  • Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice (1994) Nucleic Acids Res., 22, pp. 4673-4680
  • Jaenicke, R., Böhm, G., The Stability of Proteins in Extreme Environments (1998) Curr. Opin. Struct. Biol., 8, pp. 738-748
  • Adams, M.W.W., Kelly, R.M., Enzymes from Microorganisms in Extreme Environments (1995) Chem. Eng. News, 73, pp. 32-42
  • Jaenicke, R., Protein Stability and Molecular Adaptation to Extreme Conditions (1991) Eur. J. Biochem., 202, pp. 715-728
  • Hernandez, G., Jenney, F.E., Adams, M.W.W., Lemaster, D.M., Millisecond Time Scale Conformational Flexibility in a Hyperthermophile Protein at Ambient Temperature (2000) Proc. Natl. Acad. Sci. U. S. A., 97, pp. 3166-3170
  • Martí, M.A., Capece, L., Bikiel, D.E., Falcone, B., Estrin, D.A., Oxygen Affinity Controlled by Dynamical Distal Conformations: The Soybean Leghemoglobin and the Paramecium Caudatum Hemoglobin Cases (2007) Proteins: Struct., Funct., Genet., 68, pp. 480-487

Citas:

---------- APA ----------
Julió Plana, L., Nadra, A.D., Estrin, D.A., Luque, F.J. & Capece, L. (2019) . Thermal Stability of Globins: Implications of Flexibility and Heme Coordination Studied by Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 59(1), 441-452.
http://dx.doi.org/10.1021/acs.jcim.8b00840
---------- CHICAGO ----------
Julió Plana, L., Nadra, A.D., Estrin, D.A., Luque, F.J., Capece, L. "Thermal Stability of Globins: Implications of Flexibility and Heme Coordination Studied by Molecular Dynamics Simulations" . Journal of Chemical Information and Modeling 59, no. 1 (2019) : 441-452.
http://dx.doi.org/10.1021/acs.jcim.8b00840
---------- MLA ----------
Julió Plana, L., Nadra, A.D., Estrin, D.A., Luque, F.J., Capece, L. "Thermal Stability of Globins: Implications of Flexibility and Heme Coordination Studied by Molecular Dynamics Simulations" . Journal of Chemical Information and Modeling, vol. 59, no. 1, 2019, pp. 441-452.
http://dx.doi.org/10.1021/acs.jcim.8b00840
---------- VANCOUVER ----------
Julió Plana, L., Nadra, A.D., Estrin, D.A., Luque, F.J., Capece, L. Thermal Stability of Globins: Implications of Flexibility and Heme Coordination Studied by Molecular Dynamics Simulations. J. Chem. Inf. Model. 2019;59(1):441-452.
http://dx.doi.org/10.1021/acs.jcim.8b00840